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Summary

 

An analytical, parametric study of the attenuation of bending boundary layers or edge effects in
balanced and unbalanced, symmetrically and unsymmetrically laminated thin cylindrical shells is pre-
sented for nine contemporary material systems. The analysis is based on the linear Sanders-Koiter shell
equations and specializations to the Love-Kirchhoff shell equations and Donnell’s equations are
included. Two nondimensional parameters are identified that characterize and quantify the effects of
laminate orthotropy and laminate anisotropy on the bending boundary-layer decay length in a very
general and encompassing manner.

A substantial number of structural design technology results are presented for a wide range of
laminated-composite cylinders. For all laminate constructions considered, the results show that the
differences between results that were obtained with the Sanders-Koiter shell equations, the Love-
Kirchhoff shell equations, and Donnell’s equations are negligible. The results also show that the effect
of anisotropy in the form of coupling between pure bending and twisting has a negligible effect on the
size of the bending boundary-layer decay length of the balanced, symmetrically laminated cylinders
considered. Moreover, the results show that coupling between the various types of shell anisotropies has
a negligible effect on the calculation of the bending boundary-layer decay length in most cases. The
results also show that, in some cases, neglecting the shell anisotropy results in underestimating the
bending boundary-layer decay length and, in other cases, results in an overestimation. An example
problem is included in an appendix that demonstrates how to perform the calculations that were used to
generate the results of the present study.
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Introduction

 

The term, “bending boundary layer,” refers to localized zones of bending stresses and deformations
that appear in practically every type of thin-shell structure (ref. 1).

 

 

 

Bending boundary layers are caused
by edge support conditions; by localized mechanical loads, heating, or cooling; and by abrupt changes
in stiffness, such as those caused by a cutout, a crack, or a stiffener. All these effects may be real con-
cerns in a given preliminary design for an advanced aerospace vehicle made of laminated-composite
materials. Thus, it is useful to have nondimensional parameters that characterize the effects of shell

 T

  εx
o, εθ

o, γxθ
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  κx
o, κθ

o, κxθ
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geometry and laminate orthotropy and anisotropy on the extent of bending boundary layers that can be
used to help guide the development of a design. For example, an optimal design for a pressure vessel
might be one that exploits the membrane load-carrying action of a shell and minimizes zones of local
bending stresses. Meaningful nondimensional parameters could be used at the preliminary design stage
to identify families of laminates and material systems that exhibit relatively small bending boundary
layers. Moreover, a meaningful estimate of the size of a bending boundary layer in a shell is very useful
for determining an adequate first-approximation finite-element model for a complex shell structure.
Without a proper understanding of the extent of a bending boundary layer, it is possible to have a finite-
element model that could miss a significant part of the structural response in a region where failures are
often initiated by high interlaminar stresses. Furthermore, a priori knowledge of the extent of bending
boundary layers is useful in determining the instrumentation locations in structural verification tests and
in material characterization tests (ref. 2).

 

 

 

In addition, knowledge of how laminate construction affects
the extent of a bending boundary layer is useful for understanding how nonlinear prebuckling deforma-
tions affect the buckling behavior of cylindrical shells.

Studies of the behavior of axisymmetric, bending boundary layers in right-circular, cylindrical shell
structures made of orthotropic or anisotropic materials and with finite length have been presented, to at
least some extent, in references 1 through 13. In the discussion that follows, reference is made to unbal-
anced and balanced laminates that are either symmetrically or unsymmetrically laminated. Herein, the
term unbalanced laminate is used to indicate that coupling between pure extension or contraction and
shearing is present in a laminate. The term unsymmetric laminate is used to indicate coupling between
any of the components of bending action with any of the components of membrane action. A fully
anisotropic laminate would include both these types of anisotropy, in addition to the anisotropy that is
manifested by coupling between pure bending and twisting action that is sometimes exhibited by
balanced, symmetric laminates.

In reference 1, an analysis is presented, and an expression for the attenuation or decay length of the
bending boundary layer for a specially orthotropic cylinder that is subjected to edge loads, internal
pressure, and heating is given. These equations, and the accompanying results, are based on the linear
Love-Kirchhoff shell equations. In reference 3, an analytical solution that is based on Donnell’s simpli-
fications to the linear Love-Kirchhoff shell equations is given for fully anisotropic cylinders that are
subjected to lateral pressure and edge loads. Results that show the effect of laminate anisotropy on the
edge moment are presented for a clamped two-ply shell that is subjected to internal pressure. In
addition, a discussion is presented that suggests that solutions based on Donnell’s equations should be
accurate for laminates that are not highly anisotropic. An analytical study of bending boundary layers in
unbalanced, symmetrically laminated cylinders, which is also based on Donnell’s equations, is
presented in reference 2. The aim of this study was to determine a suitable gage section in a laminated-
composite tube that is to be used for a material characterization test. Results are presented for
unidirectional, helical-wound tubes.

An analytical solution for bending boundary layers in unbalanced, symmetrically laminated and
balanced, unsymmetrically laminated circular cylindrical shells that are subjected to internal pressure
and thermal loads is presented in reference 4. The solution is also based on Donnell’s linear equations,
and numerical results are presented for filament-wound cylinders made of heat-treated carbon-carbon
material. A study that focuses mainly on prebuckling deformations, with bending boundary layers, in
homogeneous, orthotropic and unsymmetrically laminated cross-ply cylinders that are subjected to
axial-compression loads and lateral pressure loads is presented in reference 5. The effects of the bend-
ing boundary layers on the buckling response are examined for several laminate constructions, but the
general effects of the laminate construction on the extent of the boundary layers are not discussed.
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A pair of complex conjugate, fourth-order equations that are based on Flugge’s corresponding
equations (ref. 14), which can be solved in closed form, are derived for specially orthotropic, circular
cylindrical shells in reference 6. Moreover, eigenfunction solutions are presented that include the solu-
tion for the axisymmetric bending boundary layer; several simplified equations are presented and their
relative accuracy is analyzed. In reference 7, a study of bending boundary layers in transversely isotro-
pic circular cylindrical shells is presented. This study examines the attenuation characteristics of bend-
ing boundary layers by applying an asymptotic method to the linear, three-dimensional elasticity
equations and presents order-of-magnitude estimates for the stresses and displacements for a wide range
of ratios of the two principal elastic moduli. In reference 8, an analytical solution for an unbalanced,
unsymmetrically laminated circular cylindrical shell that is subjected to internal pressure is presented
that is based on a variant of the Love-Kirchhoff shell theory, which uses an expression for the change in
surface twist that was given by Timoshenko. Numerical results that demonstrate the coupling effects of
the shell anisotropies are also presented for a two-ply shell.

The bending boundary layers of an unbalanced, unsymmetrically laminated circular cylindrical
shell that is subjected to axial compression, torsion, or thermal loading are investigated in reference 9.
Results are also presented that demonstrate the coupling effects of the shell anisotropies. In addition,
results are presented for two more conventional unsymmetric laminates and a typical quasi-isotropic
laminate. In references 10 and 11, bending boundary layers are also examined for balanced,
symmetrically laminated and balanced, unsymmetrically laminated cylindrical shells, in the context of
nonlinear prebuckling deformations that occur as a result of compression and thermal loads. In
particular, the effects of laminate stacking sequence on the extent and character of the bending
boundary layers are presented for two groups of three similar laminates. Two of the laminates are
unsymmetric. In reference 12, a linear analysis is presented that focuses mainly on balanced, symmetri-
cally laminated cylinders, and an expression is given for the length of the bending boundary layers near
the cylinder ends that is based on the Love-Kirchhoff shell equations.

Most recently, Goldenveizer’s static-geometric duality principle (ref. 15) has been used in refer-
ence 13 to reduce the Sanders-Koiter equations (refs. 16 and 17) for fully anisotropic, right-circular
cylindrical shells to two coupled, fourth-order equations that use a stress and a curvature function as the
unknown, primary field variables. The reduction is done by adding certain negligibly small terms to the
stress-strain relations, which are intrinsically in error because they must be established experimentally.
The approach demonstrates how the static-geometric duality principle can be used to reduce greatly the
amount of algebra needed to obtain results. Eigenfunction solutions are also presented for specially
orthotropic cylinders that are in agreement with corresponding results presented in reference 6. More-
over, asymptotic formulas that can be used to determine axisymmetric bending boundary-layer attenua-
tion lengths and the decay of other unsymmetric, self-equilibrated edge loads are given.

With the exception of reference 13, explicit expressions for estimating the size of axisymmetric
bending boundary layers in fully anisotropic, right-circular cylinders are not found in the literature.
Moreover, there appear to be even fewer results for laminated-composite shells made of contemporary
material systems and essentially no substantial parametric studies. The present paper focuses on devel-
oping meaningful estimates of attenuation lengths of bending boundary layers in balanced and
unbalanced, symmetrically and unsymmetrically laminated circular cylinders. The analysis is based on
the linear Sanders-Koiter shell equations and contains the Love-Kirchhoff shell equations (ref. 1) and
Donnell’s equations (ref. 1) as special cases, and is somewhat similar to the analyses presented by
Reuter (ref. 4) and Chaudhuri, Balaraman, and Kunukkasseril (ref. 8). With these equations, explicit
expressions are obtained and nondimensional parameters are presented that characterize the effects of
cylinder geometry and laminate construction on the size of a bending boundary layer in a very general
manner. In particular, generic design curves are presented that use the nondimensional parameters to
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show the effects of laminate orthotropy and anisotropy on the attenuation length in a concise and
encompassing manner. In addition, values of these parameters are presented for a very wide range of
orthotropic and anisotropic laminate constructions. Also, differences in the results that were obtained in
the present study by using the Sanders-Koiter shell equations, the Love-Kirchhoff shell equations, and
Donnell’s equations are discussed. Key details of the analysis presented are elaborated upon in
appendixes A–C. An example problem is included in appendix D that demonstrates how to perform the
calculations that were used to generate the results of the present study.

 

Analysis

 

The ordinary differential equation that governs the axisymmetric bending behavior of a right-
circular cylinder that is subjected to edge loads or displacements and surface tractions is obtained by
first specializing the linear Sanders-Koiter shell equations that are given in appendix A for axial sym-
metry. For the equations presented herein, x  and 

 

θ 

 

denote the axial and circumferential coordinates of
a right-circular cylinder, respectively, and the specialization to axial symmetry is obtained by eliminat-
ing all terms in the equations that are differentiated with respect to the circumferential coordinate 

 

θ

 

. The
resulting set of equations for axisymmetric behavior is given in appendix B. The ordinary differential
equation that governs the axisymmetric bending behavior of a right-circular cylinder that is subjected to
edge loads or displacements and surface tractions is derived in appendix B and is given by

 (1)

where S, Q, and P(x) are defined in appendix B by equations (B55), (B56), and (B57), respectively,
and w(x) is the radial deflection that is positive valued when outward. The coefficients of equation (1)
depend on the subscripted A, B, and D constitutive terms of classical Love-Kirchhoff-type laminated
shell theory (e.g., see ref. 18, pp. 190–202) and the radius of the cylinder middle surface R.

To determine the specific form of the solution to equation (1), it is useful to examine the positive-
definiteness conditions on the strain-energy density function. The strain-energy density function for this
problem is given by 

(2)

where , , and  are the membrane stress resultants,  and  are the bending stress
resultants, , , and  are the middle-surface membrane strains, and  and  are the middle-
surface bending strains. By using equations (B22), (B23), and (B28), the strain-energy density function
is expressed as

(3)

  d4w

dx4
+ 4S

d2w

dx2
+ 4Qw = P(x)

   2U = Nxεx
o + Nθεθ

o + Nxθγxθ
o + Mxκx

o + Mxθκxθ
o

 Nx   Nθ   Nxθ  Mx   Mxθ
 εx

o  εθ
o   γxθ

o   κx
o   κxθ

o

   2U = Nxεx
o + Nθεθ

o + Tγxθ
o + Mxκx

o
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The strain-energy density is expressed in terms of the strains and constitutive terms by using the consti-
tutive equation given by equation (B29); that is,

(4)

The stiffness terms in equation (4) that have overbars are defined by equations (B31)–(B35) and are
functions of the shell wall thickness-to-radius parameter,  By enforcing positive definiteness of the
strain-energy density function (e.g., see ref. 19), the requirement that the diagonal terms , ,

, and  be positive valued is obtained. Moreover, the following determinants are positive valued:

(5)

(6)

Likewise, positive definiteness of the strain-energy density function also requires that the determinant
of the constitutive matrix in equation (4) be positive valued. Moreover, by rearranging the strain-energy
density function into the form

(7)

the following additional positive-definiteness condition is obtained:

(8)

   

U =
1
2

εx
o

εθ
o

γxθ
o

κx
o

T
A11 A12 A16 B11

A12 A22 A26 B12

A16 A26 A66 B16

B11 B12 B16 D11

εx
o

εθ
o

γxθ
o

κx
o

h
R
----.

 A11  A22
 A66  D11

 A11 A12

A12 A22
= A11A22 – A12

2 > 0

 A11 A12 A16

A12 A22 A26

A16 A26 A66

= A11A22 – A12
2 A66 – A11A26

2 – A22A16
2 + 2A12A16A26 > 0

   

U =
1
2

εx
o

γxθ
o

εθ
o

κx
o

T
A11 A16 A12 B11

A16 A66 A26 B16

A12 A26 A22 B12

B11 B16 B12 D11

εx
o

γxθ
o

εθ
o

κx
o

 A11 A16

A16 A66
= A11A66 – A16

2 > 0
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The homogeneous solution for equation (1) involves the square root of the quantity . By
using equations (B55) and (B56), this quantity is given by

(9)

Substituting equations (B41)–(B43) into equation (9) and simplifying, the quantity  is found to
be given by

(10)

It follows logically that  because the positive-definiteness of the strain-energy density func-

tion requires that the determinant in equation (10) be positive valued. Moreover,  implies

that Q > 0, and Q > 0 implies that  Equations (6), (8), and (B43) indicate that . Thus,

 yields the condition that  (see eqs. (B49) and (B50)). Because ; .

Because Q is always positive, it is convenient to introduce the expression

(11)

such that , and to express equation (1) as

(12)

Equation (12) is a linear, fourth-order, nonhomogeneous ordinary differential equation with con-
stant coefficients. The characteristic equation of equation (12) is given by

(13)

By using the knowledge that , the roots of the characteristic equation are obtained from the
quadratic formula; that is,

(14)

 Q – S2

 
Q – S2 =

4C1C3 – C2
2

16C1
2

 Q – S2

 

Q – S2 =
1

4C1
2

A11 A12 A16 B11

A12 A22 A26 B12

A16 A26 A66 B16

B11 B12 B16 D11

 Q – S2 > 0

 Q – S2 > 0
 C3

C1
> 0.  C3 > 0

 C3

C1
> 0   C1 = D11e > 0  D11 > 0   e > 0

  T2 = Q =
1

4R2a22D11e

 T2 – S2 > 0

  d4w

dx4
+ 4S

d2w

dx2
+ 4T2w = P(x)

  λ4 + 4S λ2 + 4T2 = 0

 T2 – S2 > 0

   λ2
1,2 = 2 –S ± i T2 – S2
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where . Solution of this equation for 

 

λ

 

 yields four roots of equation (13) that are pairs of
complex conjugates given by

(15)

The homogeneous solution of equation (12) can be written as follows:

(16a)

where . The symbols , , , and  are real-valued constants that are determined from
the boundary conditions given by equations (B18) and (B19). The solution given by equation (16a) rep-
resents a damped, oscillatory response that decays from each end of the cylinder. The regions near the
edges of the cylinder, where the amplitude of w

 

H

 

(x)  is the largest, are called the bending boundary lay-
ers. All response quantities that exhibit bending boundary layers involve derivatives of equation (16a)
and can be expressed in the general form

        (16b)

where F

 

1

 

 through F

 

4

 

 are constants.

When the length of the bending boundary layers is less than half the cylinder length, which is typi-
cal, equations (16) can be partitioned into one part that applies to the edge x = 0  and the other that
applies to the edge x = L. The response quantities for the region near x = 0  are obtained by setting
F

 

3

 

 = 0 in equation (16b). Similarly, the response quantities for the region near  x = L  are obtained by
setting F

 

1

 

 = 0  in equation (16b). 

 

Formulas for Attenuation Length

 

Formulas for the attenuation or decay length of the bending boundary layers are obtained by first
noting that the response quantities for the region near x = 0 are bounded by the two functions

 and that the response quantities for the region near x = L are bounded by the two func-

tions . Let d denote the length for which the solution attenuates or decays to a value of

 

ε

 

 times the amplitude F

 

1 

 

or F

 

3

 

. A reasonable estimate of the attenuation length or decay length d is
obtained by replacing x  and (L 

 

−

 

 x) with d  in the exponential terms of equation (16b) and by noting
that the amplitude of F(x) is attenuated by the exponential terms. Thus, the attenuation length or decay

length is given by  which yields

(17)

  i = –1

   λ1,2,3,4 = ± T – S ± i T + S

 wH(x) = K1e
– T–S x sin( T + S x + K2) +  K3e

– T–S (L–x) sin( T + S x + K4)

  x ∈ [0,L]  K1  K2  K3  K4

 F(x) = F1e
– T–S x sin( T + S x + F2) + F3e

– T–S (L–x) sin( T + S x + F4)

  ± F1e
– T–S x

  ± F3e
– T–S (L–x)

  e– T–S d = ε,

  d = – ln ε(T – S)–1/2 <
L
2
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By using equations (B55) and (11), equation (17) is expressed as 

(18)

where is the attenuation length, in which anisotropy is neglected (

 

A

 

 = 1), that is, given in nondimen-
sional form by

(19)

The symbol h is the shell wall thickness, and  and  are nondimensional orthotropy and anisotropy
parameters or factors, respectively, that are given by

(20a)

(20b)

where the symbols in these equations are defined in appendix B.

Other useful forms of equation (20a) are obtained by introducing an effective membrane Poisson’s

ratio , which is the geometric mean of the two Poisson effects associated with the

inplane principal direction of a homogenized orthotropic material. By using this effective membrane
Poisson’s ratio, equation (20a) is expressed as

(21)

For a single layer of homogeneous, specially orthotropic material, , , and 

(22)

  d

Rh
=

do

Rh
A

 do

   do

Rh
= –

ln ε
34 O

 O A

  
O =

12A11D11

(A11A22 – A12
2 )h2

1/4

  

A =
A11A22 – A12

2

A11
a22 e

1/4

1 –
b21

a22D11e

–1/2

  
νm =

A12

A11A22

   
O =

12D11

A22h2(1 – νm
2 )

1/4

  νm = ν12ν21   A = 1

   
O =

E1

E2(1 – ν12ν21)

1/4
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which, when substituted into equation (19), yields results identical to the results presented by Kraus
(ref. 1), where the decay tolerance is given by 

 

ε

 

 = e

 

−π

 

. Likewise, for a single layer of isotropic material
with an arbitrary thickness, ,  and 

(23)

For values of ,  varies by less than 2 percent. A 90-percent-decay length (

 

ε

 

 = 0.1) that is

a good approximation to the behavior of homogeneous, metallic shells is given by .

Applying this formula, for example, to the Space Shuttle solid rocket booster described in references 20

and 21 (R = 72 in., h = 0.5 in.) gives  = 0.15R = 10.8 in. 

It is interesting to note that the differences between the attenuation lengths that are based on the
Sanders-Koiter, the Love-Kirchhoff, and Donnell’s equations appear in the coefficient  and in the
symbols with overbars in equation (20b) for the anisotropy factor  (see eqs. (B22), (B31)–(B35), and

(B45)–(B49)). For these equations, the Sanders-Koiter theory is given by  and the Love-

Kirchhoff theory is given by . Donnell’s equations are given by . For isotropic and specially
orthotropic cylinders,  and the three sets of shell equations yield identical results. Similarly, for
antisymmetric cross-ply cylinders (A

 

16

 

 = A

 

26

 

 = D

 

16

 

 = D

 

26

 

 = B

 

16

 

 = B

 

26

 

 = B

 

12

 

 = B

 

66

 

 = 0) 

(24)

and the three shell theories yield identical results.

 

Simplified Formulas for 

  

AAAA

 

 

 

For balanced, symmetrically laminated cylinders, the only anisotropic constitutive terms are D

 

16

 

and D

 

26

 

, and the anisotropy factor is given by  where

(25)

  νm = ν   A = 1,

   O =
1

(1 – ν2)
4

  0.2 ≤ ν ≤ 0.33 O
 do

R
= 1.79

h
R

 do

e
A

  µ =
3
2

  µ = 1   µ = 0

  A = 1

  

A = 1 –
B11

2

A11D11

1/4

1 –
A12B11

(A11A22 – A12
2 )(A11D11 – B11

2 )

–1/2

  A = e4

   

e = 1 –
µ2D16

2

A66D11h2

h
R

2

1 + µ2 h
R

2 D66

A66h2
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For thin-shell theories, such as the Sanders-Koiter theory and the Love-Kirchhoff theory, . This

result suggests that a useful approximation to equation (25) and the anisotropy factor can be obtained

from a power series expansion for small values of . This process yields

(26)

In this expression,  and  Thus, the approximate formula for  indicates

that for most practical applications of thin-shell theory, the differences between the three different shell
theories considered herein and the effect of the flexural anisotropy of a general symmetrically laminated
cylinder are negligible.

A simplified formula for the anisotropy factor can be derived for the general expression for  that

is given by equation (20b). For this case, the following power series expansions for small values of 

are used:

(27)

(28)

(29)

(30)

(31)

Substituting equations (27)–(31) into equation (20b) and expanding the resulting expression in a similar
manner yields
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The coefficient  is a very complicated expression, and as a result, the following first-order approxi-
mation of  is used herein; that is,

(33)

where  is the value of equation (20b) with , which is the anisotropy factor that corresponds to
the use of Donnell’s equations. The expression for  is given by

(34)

In this expression,  and  are obtained from equations (B45)–(B48) by setting  in equa-
tions (B31)–(B35). The expression for  is obtained from equation (B49) in a similar manner. The
term  in equation (33) represents a first-order correction to the results that correspond to Donnell’s
equations and is given by

(35)

where the terms that appear in equation (35) are given in appendix C. In addition, further simplifications
to  
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are also presented in appendix C for unbalanced and balanced symmetric laminates and
for balanced, unsymmetric laminates that include the subclasses of general antisymmetric laminates,
antisymmetric cross-ply laminates, and antisymmetric angle-ply laminates. The relative size of 

 

C

 

1

 

 

 

and
its contribution to equation (33) are examined parametrically in the subsequent section of the present
study.

 

Results and Discussion

 

Equations (18) and (19) form the basis for the parametric study presented herein. In particular,
the two equations isolate the contributions of shell orthotropy and shell anisotropy to the bending
boundary-layer decay length with nondimensional parameters and imply the generic design-chart repre-
sentations that are illustrated in figures 1 and 2. In figure 1, generic results are presented that show the

nondimensional, 90-percent-decay length given by , as a function of the orthotropy param-

eter

 

 O

 

, for selected values of the anisotropy parameter A. A 90-percent-decay length was selected herein
to yield an accuracy that is approximately to within the accuracy of the experimentally determined
material properties, but other values could be used.

In a manner similar to figure 1, figure 2 shows the nondimensional, 90-percent-decay length, as a
function of the anisotropy parameter A, for selected values of the orthotropy parameter O. Results that
correspond to balanced, symmetrically laminated cylinders are given by a value of  and results
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that correspond to an isotropic shell wall are indicated in the figures by the filled circle with an ordinate
value of 1.79. Overall, these two figures represent results that are applicable to a vast range of laminate
constructions and provide a common basis for comparison of regular and hybrid laminates made of dif-
ferent material systems and laminate stacking sequences. In general, the figures show increases in the
nondimensional 90-percent-decay length, with increases in either the orthotropy parameter O or the
anisotropy parameter A. In addition, the results in figures 1 and 2 clearly indicate the effect of neglect-
ing shell-wall anisotropy on the attenuation of a bending boundary layer.

The actual value of the nondimensional, 90-percent-decay length depends on the particular values
of the orthotropy and anisotropy parameters of a given laminate. Thus, additional results are presented
subsequently that show how the orthotropy parameter O and the anisotropy parameter A vary with
laminate construction. In particular, values of O and A are presented first for balanced and unbalanced
symmetrically laminated cylinders. Then, values are presented for balanced and unbalanced unsymmet-
rically laminated cylinders. Nine different contemporary material systems were used to generate
these results. These material systems include boron-aluminum, S-glass-epoxy, a typical boron-epoxy,
AS4/3501-6 graphite-epoxy, AS4/3502 graphite-epoxy, IM7/5260 graphite-bismaleimide, Kevlar
49-epoxy, IM7/PETI-5 graphite-epoxy, and P-100/3502 pitch-epoxy materials. The mechanical
properties of these material systems are presented in table 1; the nominal ply thickness that was used is
0.005 in. An example problem in appendix D demonstrates how to perform the calculations that were
used to generate the results that are presented subsequently.

Balanced, Symmetrically Laminated Cylinders 

Symmetrically laminated shell walls are characterized mathematically by values of zero for the sub-
scripted B terms that appear in the constitutive equation (A15). In addition, balanced, symmetrically
laminated shell walls do not exhibit coupling between extension and shear, which is characterized by
A16 = A26 = 0 in equation (A15). Shell walls of this class are strictly specially orthotropic for many
laminates. However, for some wall constructions, balanced, symmetric laminates exhibit anisotropy in
the form of coupling between pure bending and twisting of the shell wall. This type of anisotropy is
manifested by nonzero values of the D16 and D26 constitutive terms in equation (A15). However, the
discussion of equation (26) that has been given herein indicates that this type of anisotropy is negligible
for thin shells and that the differences between results obtained from the Sanders-Koiter, the
Love-Kirchhoff, and the Donnell theories are insignificant. Moreover,  for this class of laminated-
composite shell walls, and the attenuation behavior is governed by the nondimensional orthotropy
parameter O that is given by equation (20a). Furthermore, equations (18) and (19) indicate that the
attenuation length is a constant multiple of the orthotropy parameter that depends on the attenuation-
tolerance parameter ε. For this case, trends that are exhibited by O are identical to those exhibited by the
attenuation length based on any value of ε.

Values of the orthotropy parameter O are presented in figure 3 and table 2 for single-ply, homoge-
neous, specially orthotropic and isotropic shell walls, with arbitrary thickness, as a function of the
ratio of the principal elastic moduli, E2/E1. For these results, the orthotropy parameter is given by
equation (22) and is expressed in the following, more convenient form:

(36)
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One curve (shown in fig. 3), which is essentially several coincident curves, corresponds to general
results for  In addition, specific results for the nine material systems considered herein
and for a typical aluminum and a steel are indicated by the square symbols in the figure. The results in
figure 3 indicate that the effects of variations in the major Poisson’s ratio on the orthotropy parameter O
are small compared to the effect of variations in the ratio of the principal elastic moduli. Moreover, the
results show that O decreases rapidly as the ratio of the principal elastic moduli increases, particularly
for values of E2/E1 less than approximately 0.1, which corresponds to most of the contemporary ortho-
tropic materials considered herein. Figure 3 also shows that an isotropic material corresponds to 

Values of the orthotropy parameter O for the single-ply, homogeneous, specially orthotropic cylin-
ders investigated by Cheng and He (ref. 6) were also obtained. A comparison of the results obtained in
the present study, with the corresponding results of reference 6, is presented in table 3 for boron-epoxy,
glass-epoxy, and graphite-epoxy materials and for the cylinder radius-to-thickness ratio R/h = 208.311.
Moreover, a range of results is shown for reference 6 that corresponds to various simplifications that
were used in the equations that govern the response. The actual material properties that were used are
given in reference 6. In table 3, the quantity used for comparison is given by

(37)

which is the real part of the exponent  p that appears in the eigenfunction solution used by Cheng and
He (n = 0 in eq. (25) of ref. 6; see also eq. (47) of ref. 13), which corresponds to the decay or attenuation
of the response. The orthotropy parameter shown in equation (37) is defined by equation (36). The
results in table 3 show very good agreement (less than 1 percent difference) for all three materials. In
addition, the results obtained herein that are shown in table 3 for the boron-epoxy material are also in
excellent agreement with the corresponding results presented by McDevitt and Simmonds (ref. 13).

Values of the orthotropy parameter O are presented in figure 4 and table 4 for multilayered  [(±φ)m]s
laminates made from the nine material systems as a function of the fiber angle φ, which is measured
from the x-axis toward the θ-axis. The results are independent of the stacking sequence number m and
show a wide variation in O with the material system. The results also show, for the most part, a wide
variation in O with the fiber angle φ and a reduction in O as the fiber angle increases from 0° to 90°. The
largest value (2.93) and the smallest value (0.34) of O are exhibited by the unidirectional laminates

made from P-100/3502 pitch-epoxy material and correspond to values of  equal to 5.13 and

0.59, respectively. Moreover, the greatest variation in O with the fiber angle (approximately 8.7 times)
is exhibited by the laminates made from P-100/3502 pitch-epoxy material. The smallest variation is
exhibited by the laminates made from the boron-aluminum material.

Results are presented in figure 5 that show the values of the orthotropy parameter for [(±45/02)m]s,
[(02/±45)m]s,  [(±45/902)m]s,  [(902/±45)m]s,  [(±45/0/90)m]s, and  [(0/90/±45)m]s  laminates  made  of
IM7/5260 graphite-bismaleimide material for values of the stacking sequence number m = 1 to 6.
Values of  O range from approximately 1.53 to 0.64. These results show that the curves for the
[(±45/02)m]s and [(02/±45)m]s laminates approach  as m  increases to a value of 6, with the
curve for the [(02/±45)m]s laminates converging from above and the other curve converging from
below. The higher values of O for the [(02/±45)m]s laminates are attributed to the higher axial bending
stiffness that is obtained by placing the 0° plies at the outer surfaces of the laminates, particularly for the
lower values of the stacking sequence number m. Similarly, the results in figure 5 show that the curves
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for the [(±45/902)m]s and [(902/±45)m]s laminates approach  as m increases to a value of 6,
with the curve for the [(±45/902)m]s laminates converging from above and the other curve converging
from  below.  Likewise,  the  results  in  figure  5  show  that  the  curves  for  the  [(±45/0/90)m]s  and
[(0/90/±45)m]s quasi-isotropic laminates approach  as m increases to a value of 6, with the
curve for the [(0/90/±45)m]s laminates converging from above and the other curve converging from
below.

Overall, the results in figure 5 indicate that the [(±45/02)m]s and [(02/±45)m]s laminates exhibit
higher values of the orthotropy parameter than the [(±45/0/90)m]s and [(0/90/±45)m]s quasi-isotropic
laminates, which  exhibit  higher  values  of the orthotropy  parameter than  the  [(±45/902)m]s and
[(902/±45)m]s laminates. This trend corresponds to a reduction in the value of  as the axial bending
and extensional stiffnesses of the laminates decrease. 

Results are presented in figure 6 and table 5 that show the effect of the nine material systems con-
sidered herein on the orthotropy parameter for the [(02/±45)m]s laminates. Values of  range from
approximately 1.67 for P-100/3502 pitch-epoxy material to 1.09 for boron-aluminum material. Most of
the materials exhibit values of  in the range of approximately 1.4 to 1.6. All curves show about the
same reduction in  as the stacking sequence number m increases.

Results similar to those in figure 6 and table 5 are presented in figure 7 and tables 6 and 7 that
show the  effect of the nine material systems on the orthotropy parameter for the [(±45/0/90)m]s and
[(0/90/±45)m]s quasi-isotropic laminates. These results show a much smaller variation in the orthotropy
parameter with material system and stacking sequence number for the quasi-isotropic laminates than for
the [(02/±45)m]s laminates in figure 6. In particular, values of  for the quasi-isotropic laminates range
from approximately 1.15 to 1.0. The largest values of  in figure 7 are exhibited by the laminates made
of the P-100/3502 pitch-epoxy material. Moreover, the results show a larger variation in  with stack-
ing sequence number for the [(0/90/±45)m]s laminates than for the [(±45/0/90)m]s laminates.

Unbalanced, Symmetrically Laminated Cylinders 

Unbalanced, symmetric laminates exhibit anisotropy in the form of extensional-shear coupling
(A16 ≠ 0, A26 ≠ 0) in addition to flexural anisotropy (D16 ≠ 0, D26 ≠ 0). For these laminates, the value of
the  anisotropy parameter , given by equations (20b) and (33), is not equal to unity. Simplified
expressions for the anisotropy parameter  and the first-order correction factor , defined by equa-
tions (33)–(35), are given by equations (C23) and (C24), respectively. Equation (C24) indicates that the
value  depends on coupling between the membrane and flexural anisotropies.

Values of the orthotropy parameter  for [(+φ)2m]s symmetric, unidirectional laminates for the
nine material systems considered herein are also presented in figure 4 and table 4; that is, the curves
presented in figure 4 and the data presented in table 4 for the [(±φ)m]s symmetric angle-ply laminates
are identical to those for the corresponding [(+φ)2m]s symmetric, unidirectional laminates. Thus, the
orthotropy behavioral trends for the undirectional laminates are identical to those discussed previously
for the symmetric angle-ply laminates and are also independent of the stacking sequence number m.

Results for the anisotropy parameter  and the first-order correction factor  are shown in fig-
ure 8 and table 8 and in figure 9, respectively, for the [(+φ)2m]s symmetric, unidirectional laminates
with the nine material systems considered herein and are independent of the stacking sequence number
m. The results in figure 8 and table 8 show a substantial variation in  with fiber orientation and with
material system. The results show that  is the most pronounced for values of the fiber angle φ
between approximately 55° and 80° and that the contribution of the anisotropy to the attenuation
behavior is essentially insignificant (<1.05) for values of φ < 25° and φ > 85°. Moreover, the largest
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variation in  with fiber angle is exhibited by the laminates made of the P-100/3502 pitch-epoxy
material, and the smallest variation is exhibited by the laminates made of boron-aluminum material.
Values of  range from approximately 1.42 for the maximum point on the curve for the P-100/3502
pitch-epoxy material to a value of 1.

The results shown in figure 9 for the first-order correction factor  for the [(+φ)2m]s symmetric,

unidirectional laminates indicate a substantial relative variation in  with fiber orientation and with

material system, but all values of  are less than approximately 0.45. Moreover,  is less than
approximately 0.2 for all materials except the P-100/3502 pitch-epoxy material. For the upper bound of

thinness of thin-shell theory, given by  =  the contribution of  to the anisotropy factor

defined by equation (33) is practically negligible. Equation (C24) indicates that the insignificance of
 means that the coupling of the membrane and flexural anisotropies is negligible for these laminates.

The insignificance of  is illustrated and verified in figure 10 for the [(+φ)2m]s symmetric, unidirec-
tional laminates made of IM7/5260 graphite-bismaleimide material (black curves) and P-100/3502

pitch-epoxy material (gray curves) for  =  The finely dashed curves shown in figure 10

correspond to 90-percent-decay lengths for which the anisotropy is neglected. In contrast, the solid
curves and the coarsely dashed gray curve include the effect of the membrane anisotropy and are shown
for values of µ = 0, 1.0, and 1.5. For these values, results that correspond to the Sanders-Koiter theory

and the Love-Kirchhoff theory are given by  and µ = 1.0, respectively. Results that correspond to

Donnell’s equations are given by µ = 0. The solid curves in figure 10 for µ = 1.0 and 1.5 are based on
the exact solution that uses equation (20b) for the anisotropy factor. The corresponding curves that are
based on the approximate formula for the anisotropy parameter that is given by equation (33) are identi-
cal. The solid curves and the coarsely dashed gray curve indicate that varying µ yields a small effect,
which implies that all three shell theories yield essentially the same results and that  for the

[(+φ)2m]s symmetric, unidirectional laminates. Comparing the solid and finely dashed curves in
figure 10 also indicates that neglecting the membrane anisotropy underestimates the bending boundary-
layer decay length by as much as approximately 31 percent and 21 percent for shell walls made of
P-100/3502 pitch-epoxy and IM7/5260 graphite-bismaleimide materials, respectively. 

Values of the orthotropy parameter  for [(+452/0/90)m]s and [(0/90/+452)m]s laminates made of
the nine material systems considered herein are also presented in figure 7 and in tables 6 and 7, respec-
tively. More specifically, the values of  for these laminates are identical to the values for the corre-
sponding quasi-isotropic laminates. Results for the anisotropy parameter , defined by equation (34),
are shown in figure 11 for [(+452/0/90)m]s and [(0/90/+452)m]s laminates made of the nine material
systems considered herein. The results in figure 11 are identical for the two laminate families, show no
significant variation in  with the stacking sequence number m, and only a slight variation (less than
approximately 9 percent) with the material system. Values of  range between approximately 1.1
and 1.0. Corresponding results for the first-order correction factor , defined by equation (35),
which are not shown herein, were obtained and indicate that all values of  for the [(+452/0/90)m]s
and [(0/90/+452)m]s laminates are less than approximately 0.1. These values indicate that the contribu-
tion of  to the anisotropy factor defined by equation (33) is practically negligible. Thus,  for
these laminates. The values of  shown in figure 11 suggest that neglecting the anisotropy would, at
most, underestimate the bending boundary-layer decay length by approximately 10 percent. The insig-
nificance of  also means that the coupling of the membrane and flexural anisotropies are unimportant
with regard to the primary effect of the individual shell anisotropies that is captured by the parameter
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Balanced, Unsymmetrically Laminated Cylinders

Balanced, unsymmetric laminates may, in general, exhibit anisotropy in the form of coupling
between pure bending and twisting (D16 ≠ 0, D26 ≠ 0) and coupling between membrane and bending
action, which is manifested by nonzero values for any of the subscripted B-terms in equation (A15).
These laminates do not, however, exhibit extensional-shear coupling (A16 = A26 = 0). For the unsym-
metric laminates that are discussed subsequently, the first ply in the stacking sequence is the innermost
ply of a cylinder. Simplified expressions for the anisotropy parameter  and the first-order correction
factor , defined by equations (33)–(35), are given by equations (C27) and (C29), respectively. Equa-
tions (C28) and (C29) indicate that the value of  depends on coupling between the flexural anisot-
ropy and the anisotropy caused by unsymmetric lamination.

Results for regular, antisymmetric angle-ply laminates are shown in figures 4 and 12–16, and in
tables 4 and 9. In particular, values of the orthotropy parameter  for [(±φ)m]T unsymmetric laminates
made of the nine material systems considered herein are also presented in figure 4 and table 4; that is,
the orthotropy-parameter curves presented in figure 4 and the data presented in table 4 for the [(±φ)m]s
symmetric angle-ply laminates are also identical to those for [(±φ)m]T unsymmetric laminates. Thus, the
orthotropy behavioral trends for the [(±φ)m]T unsymmetric laminates are identical to those discussed
previously for the corresponding symmetric angle-ply laminates and are also independent of the stack-
ing sequence number m.

Results for the anisotropy parameter  defined by equation (C27) are shown in figure 12 and
table 9 for two-ply [±φ]T unsymmetric laminates made of the nine material systems considered herein.
The results in figure 12 show a substantial variation in  with fiber orientation and with material
system and also show that  is the most pronounced for values of the fiber angle φ between approxi-
mately 15° and 60°. Moreover, the largest variation in  with fiber angle is exhibited by the laminates
made of the P-100/3502 pitch-epoxy material, and the smallest variation is exhibited by the laminates
made of boron-aluminum material. Values of  range from approximately 0.75 for the minimum
point on the curve for the P-100/3502 pitch-epoxy material to a value of 1.0. The results in figure 13
show the variation in  with the fiber angle φ and the stacking sequence number m for [(±φ)m]T
unsymmetric laminates made of the P-100/3502 pitch-epoxy material. These results show a rapid
decline in the importance of  that is manifested by the curve moving closer to  = 1, as the stack-
ing sequence number increases. For m = 2, 0.95 <  < 1.

Results for the first-order correction factor  are shown in figure 14 for two-ply [±φ]T unsymmet-
ric laminates made of the nine material systems considered herein. The results in figure 14 also show a
substantial variation in  with fiber orientation and with material system. However, the maximum
value of  < 0.07 for all material systems. Results are presented in figure 15 that show the variation in

 with the fiber angle φ and the stacking sequence number m for [(±φ)m]T unsymmetric laminates
made of the P-100/3502 pitch-epoxy material. These results show significant reductions in  with an
increase in the stacking sequence number. 

Overall, the results in figures 14 and 15 indicate that the contribution of  to the anisotropy factor

defined by equation (33) is negligible for the upper bound of thinness given by  which means

that . Thus, the results in figure 12 for the two-ply [±φ]T unsymmetric laminates indicate that

neglecting the shell anisotropy overestimates the bending boundary-layer decay length (because

) by as much as approximately 33 and 22 percent for shell walls made of P-100/3502 pitch-

epoxy and IM7/5260 graphite-bismaleimide materials, respectively. The insignificance of  is illus-

trated in figure 16 by the gray and the black curves for the laminates made of P-100/3502 pitch-epoxy
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and IM7/5260 graphite-bismaleimide materials, respectively. The solid black and the gray curves are

for the upper bound of thin-shell theory that is given by  The finely dashed curves shown in

figure 16 correspond to 90-percent-decay lengths for which the anisotropy is neglected. In contrast, the

solid curves include the effect of the shell anisotropy and are shown for values of µ = 0, 1.0, and 1.5.

The solid curves for µ = 1.0 and 1.5 are based on the exact solution that uses equation (20b). The corre-

sponding curves that are based on the approximate formula for the anisotropy parameter given by

equation (33) are identical. The solid curves indicate no significant effect of varying µ, which implies

that all three shell theories yield essentially the same results for the [±φ]T unsymmetric laminates. For

[(±φ)m]T unsymmetric laminates with m > 1 that are made from any of the nine material systems

considered herein, the results in figures 12 through 15 indicate that neglecting the shell-wall anisotropy

will have a small effect on the calculation of the bending boundary-layer decay length.

Values of the orthotropy parameter  and the anisotropy parameter  for [0p/90q]T unsymmetric
cross-ply laminates are shown in figure 17 and table 10, and in figure 18 and table 11, respectively, for
the nine material systems considered herein and as a function of the percentage of 0° plies. For this class
of laminates, equation (20b) simplifies to equation (34); that is, . This simplification means that
the anisotropy parameter is independent of µ, which means that all three shell theories considered
herein yield identical results.

The results in figure 17 show a large variation in  with the percentage of 0° plies for most of the
material systems. In addition, the results show a large variation in  with the material system for the
laminates that are dominated by 90° plies (less than approximately 10 percent 0° plies) and by 0° plies
(more than approximately 80 percent 0° plies). Values of  vary the most for laminates made of
P-100/3502 pitch-epoxy material, with values that range from approximately 0.3 to 2.93. Most of the
materials exhibit values of  in the range of approximately 0.6 to 2.1.

The results in figure 18 also show a large variation in  with the percentage of 0° plies for most
of the material systems and a large variation with material system for laminates with < 70 percent
0° plies. Moreover, the results show that  is the most pronounced (most different from a value of 1)
for laminates with approximately 15 to 30 percent 0° plies. The largest variation in  with the per-
centage of 0° plies is exhibited by the laminates made of the P-100/3502 pitch-epoxy material, and the
smallest variation is exhibited by the laminates made of boron-aluminum material. Values of  range
from approximately 0.57 for the minimum point on the curve for the P-100/3502 pitch-epoxy material
to a value of 1. Thus, in some cases neglecting the shell-wall anisotropy overestimates the bending
boundary-layer  decay  length  by  as  much  as  approximately  75  percent  for  a  shell  wall  made  of
P-100/3502 pitch-epoxy material. This result is illustrated in figure 19 by the gray curves. Similar
results are presented in figure 19 for [0p/90q]T unsymmetric cross-ply laminates made of IM7/5260
graphite-bismaleimide material (black curves). The solid black and the gray curves include the effect of
the shell anisotropy, and the finely dashed curves shown in the figure correspond to 90-percent-decay
lengths for which the anisotropy is neglected. The results in figure 19 show that including the effect of
anisotropy is particularly important for laminates with less than approximately 70 percent 0° plies and
more than approximately 5 percent 0° plies.

Unbalanced, Unsymmetrically Laminated Cylinders

Unbalanced, unsymmetric laminates may, in general, exhibit full anisotropy in the form of coupling
between pure bending and twisting (D16 ≠ 0, D26 ≠ 0) and coupling between membrane and bending
action, which is manifested by nonzero values for any of the subscripted B-terms in equation (A15), and
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extensional-shear coupling (A16 ≠ 0, A26 ≠ 0). The expressions for the anisotropy parameter  and
the first-order correction factor  that are given by equations (C2)–(C22) indicate that  exhibits
coupling between the membrane anisotropy and the anisotropy that is caused by unsymmetric lamina-
tion, and that  exhibits coupling between all three types of anisotropies. One family of laminates that
exhibits all these anisotropies is the [70p/0q]T unbalanced, unsymmetric laminates with p > 0 and q ≠ 0. 

Values of the orthotropy parameter  and the anisotropy parameter  for [70p/0q]T unbalanced,
unsymmetric laminates are shown in figure 20 and table 12 and in figure 21 and table 13, respectively,
for the nine material systems considered herein and as a function of the percentage of 70° plies. The
results in figure 20 show a large variation in , with the percentage of 70° plies for most of the material
systems. The results also show a large variation in  with the material system for the laminates that
aredominated by 0° plies (less than approximately 20 percent 70° plies). Values of  vary the most for
laminates made of P-100/3502 pitch-epoxy material, with values that range from approximately 0.5
to 3.0.

The results in figure 21 also show a substantial variation in  with the percentage of 70° plies for
most of the material systems and a large variation with material system for laminates with between
approximately 45 and 100 percent 70° plies. The largest overall variation in  with the percentage of
70° plies is exhibited by the laminates made of the P-100/3502 pitch-epoxy material, and the smallest
variation is exhibited by the laminates made of boron-aluminum material. Values of  range from
approximately 1.4 to 0.95, which correspond to the maximum and minimum points, respectively, on the
curve for the P-100/3502 pitch-epoxy material.

Results for the first-order correction factor  were also obtained for [70p/0q]T unbalanced,

unsymmetric laminates made of the nine material systems considered herein but are not included in the
present paper. These results also show a substantial, relative variation in  with the percentage of

70° plies, but overall, the magnitude of  is less than approximately 0.25 for the P-100/3502 pitch-

epoxy material and < 0.1 for the other materials. These results indicate that the contribution of  to the

anisotropy factor defined by equation (33) is negligible for the upper bound of thin-shell theory that is

given by  which means that . Thus, the results in figure 21 suggest that, in some

cases, neglecting the shell-wall anisotropy may overestimate the bending boundary-layer decay length
and, in other cases, may underestimate the decay length. This statement is based on the observation that,
for example, when , including anisotropy reduces the value of the decay length given by

equations (18) and (19). The insignificance of  also means that the contribution of the flexural anisot-

ropy to the coupling of the anisotropies is negligible. The insignificance of  is clarified in figure 22

for laminates made of P-100/3502 pitch-epoxy material (gray curves) and of IM7/5260 graphite-
bismaleimide material (black curves). The solid black and the gray curves are for the upper bound of

thinness given by  The finely dashed curves shown in the figure correspond to 90-percent-

decay lengths for which the anisotropy is neglected. In contrast, the solid curves include the effect of the
shell anisotropy and are shown for values of µ = 0, 1.0, and 1.5. Moreover, the solid curves for µ = 1.0
and 1.5 are based on the exact solution that uses equation (20b). The corresponding curves that are
based on the approximate formula for the anisotropy parameter that is given by equation (33) are identi-

cal. The solid curves indicate a negligible effect of varying µ, which verifies that  and implies

that all three shell theories yield essentially the same results for the [70p/0q]T unbalanced, unsymmetric
laminates. In addition, the results show that neglecting the shell-wall anisotropy, for the most part,
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underestimates the bending boundary-layer decay length by as much as approximately 16 and 6 percent
for shell walls made of P-100/3502 pitch-epoxy and IM7/5260 graphite-bismaleimide materials,
respectively, and with approximately 20-percent 70° plies. In addition, the results in figure 22 show that
neglecting the shell-wall anisotropy underestimates the bending boundary-layer decay length by as
much  as  approximately  31  and  20  percent  for  shell  walls  made  of  P-100/3502  pitch-epoxy  and
IM7/5260 graphite-bismaleimide materials, respectively, and with approximately 100-percent 70° plies.
There is only a very small range shown in figure 22 where neglecting the shell-wall anisotropy overesti-
mates the bending boundary-layer decay length, and for this region, the effect is negligible.

Concluding Remarks

An analytical study of the attenuation of bending boundary layers in both balanced and unbalanced,
symmetrically and unsymmetrically laminated-composite, thin cylindrical shells has been presented for
nine contemporary material systems. The analysis is based on the linear Sanders-Koiter shell equations
and contains the Love-Kirchhoff shell equations and Donnell’s equations as special cases. With this
analysis, two nondimensional parameters have been identified that characterize and quantify the effects
of laminate orthotropy and laminate anisotropy on the bending boundary-layer decay length in a very
general and encompassing manner. The anisotropy parameter includes the effects of anisotropy in the
form of coupling between pure bending and twisting that appears in many symmetric laminates to some
extent, coupling between extension and shear that is present in unbalanced laminates, and coupling
between membrane and bending action that is present in unsymmetric laminates.

A substantial number of structural design technology results for the bending boundary-layer decay
length have been presented for a wide range of laminated-composite shell structures that should be use-
ful additions to the structural designer’s collection of preliminary design tools. Moreover, the analysis
and results should provide additional physical insight into the fundamental behavior of general
laminated-composite shell structures and create a common basis for assessing bending boundary-layer
attenuation for the vast range of laminate constructions that are possible. Furthermore, the results
should be useful for the design of specimens for material characterization tests, for instrumenting struc-
tural verification tests, and for defining finite-element meshes. For all the laminate constructions con-
sidered in the present study, the results show that the differences between results that were obtained
with the Sanders-Koiter shell equations, the Love-Kirchhoff shell equations, and Donnell’s equations
are negligible. The results also show that the effect of anisotropy in the form of coupling between pure
bending and twisting has a negligible effect on the size of the bending boundary-layer decay length of
the balanced, symmetrically laminated cylinders considered. Moreover, the results show that the cou-
pling of the membrane and flexural anisotropy and the anisotropy caused by unsymmetric lamination is
generally unimportant with regard to the primary effect of the individual shell anisotropies on the bend-
ing boundary-layer decay length. The only exception encountered was for unbalanced, unsymmetrically
laminated cylinders for which coupling of the membrane anisotropy and the anisotropy caused by
unsymmetric lamination is a primary effect, as expected. The results also show that in some cases
neglecting the shell anisotropy results in underestimating the bending boundary-layer decay length and
in other cases results in an overestimation.
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Table 1. Lamina Properties

Lamina 
property

(a)

Material systems

Boron-
Al

S-glass-
epoxy

Kevlar 
49-epoxy

IM7/
5260

AS4/
3502

AS4/
3501-6

Boron-
epoxy

IM7/
PETI-5

P-100/
3502

E1, Msi 33   7.5 11.02 22.1 18.5 20.01 29.58 20.35 53.5

E2, Msi 21   1.7 0.8   1.457   1.64   1.30   2.68   1.16   0.73

ν12   0.23   0.25   0.34   0.258   0.30   0.30   0.23   0.29   0.31

G12, Msi   7.0   0.80   0.33   0.860   0.87   1.03   0.81   0.61   0.76

α1 x 106/°F   3.2   3.5 −2.22   0.0125   0.25 −0.167   3.38 −0.14 −0.64

α2 x 106/°F 11.0 11.0 43.89 14.91 16.2 15.6 16.83 16.85 17.2

aSubscripts 1 and 2 denote the longitudinal (fiber) and transverse (matrix) directions of a specially orthotropic 
lamina, respectively.

Table 2. Orthotropy Parameters for Single-Ply, Homogeneous, 
Specially Orthotropic Laminates

[See eq. (36)]

E2/E1

Orthotropy parameter, O

ν12 = 0.2 ν12 = 0.35

0.01 3.16 3.16
0.02 2.66 2.66
0.04 2.24 2.24
0.06 2.02 2.02
0.08 1.88 1.88
0.1 1.78 1.78
0.15 1.61 1.61
0.2 1.50 1.50
0.3 1.36 1.36
0.4 1.26 1.27
0.5 1.20 1.21
0.6 1.14 1.16
0.7 1.10 1.12
0.8 1.07 1.09
0.9 1.04 1.06
1.0 1.01 1.03

Table 3. Results for Specially Orthotropic Materials

Material 
systems

E2/E1
(a)

ν12 O
Re(p), from
reference 6

(b)

Re(p), from
present study

(b)

Boron-epoxy 0.100 0.30 1.782 2.796–2.805 2.806
Glass-epoxy 0.333 0.25 1.323 3.757–3.779 3.779
Graphite-epoxy 0.250 0.25 2.516 1.984–1.987 1.987
aSubscripts 1 and 2 denote the major and minor principal directions, respectively, of the specially orthotropic

materials defined in reference 6.
bQuantity Re(p) is defined by equation (37).
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Table 4. Orthotropy Parameters for [(±φ)m]s, [(+φ)2m]s, and [(±φ)m]T Laminates

Fiber 
angle, 

φ

Orthotropy parameter, O
IM7/
5260

Boron-
Al

S-glass-
epoxy

Kevlar 
49-epoxy

AS4/
3502

AS4/
3501-6

Boron-
epoxy

IM7/
PETI-5

P-100/
3502

  0 1.98 1.13 1.45 1.93 1.84 1.98 1.82 2.05 2.93
  5 1.97 1.13 1.45 1.92 1.83 1.97 1.82 2.04 2.90
10 1.94 1.13 1.44 1.91 1.81 1.94 1.81 2.02 2.84
15 1.90 1.12 1.42 1.88 1.77 1.88 1.79 1.98 2.73
20 1.84 1.12 1.39 1.84 1.72 1.80 1.76 1.92 2.58
25 1.76 1.11 1.35 1.78 1.66 1.71 1.72 1.84 2.40
30 1.65 1.10 1.30 1.70 1.57 1.59 1.67 1.74 2.19
35 1.53 1.09 1.24 1.60 1.46 1.46 1.59 1.61 1.97
40 1.39 1.07 1.16 1.46 1.34 1.32 1.48 1.46 1.74
45 1.23 1.05 1.08 1.30 1.20 1.17 1.33 1.29 1.50
50 1.07 1.02 1.00 1.13 1.05 1.03 1.15 1.12 1.26
55 0.92 0.99 0.92 0.96 0.92 0.89 0.97 0.94 1.04
60 0.78 0.97 0.85 0.81 0.80 0.77 0.81 0.79 0.83
65 0.68 0.95 0.79 0.69 0.70 0.68 0.70 0.67 0.65
70 0.60 0.93 0.75 0.61 0.63 0.60 0.62 0.59 0.51
75 0.55 0.92 0.72 0.56 0.59 0.55 0.58 0.53 0.42
80 0.52 0.91 0.71 0.53 0.56 0.52 0.56 0.50 0.37
85 0.51 0.90 0.70 0.52 0.55 0.51 0.55 0.49 0.35
90 0.51 0.90 0.69 0.52 0.55 0.51 0.55 0.49 0.34

Table 5. Orthotropy Parameters for [(02 /±45)m]s Laminates

Number of 
laminate 
plies, 8m

Orthotropy parameter, O

IM7/
5260

Boron-
Al

S-glass-
epoxy

Kevlar 
49-epoxy

AS4/
3502

AS4/
3501-6

Boron-
epoxy

IM7/
PETI-5

P-100/
3502

  8 1.53 1.12 1.32 1.54 1.49 1.52 1.52 1.56 1.67
16 1.48 1.10 1.28 1.48 1.44 1.46 1.46 1.50 1.60
24 1.46 1.10 1.27 1.46 1.42 1.44 1.44 1.48 1.58
32 1.45 1.09 1.26 1.45 1.41 1.43 1.43 1.47 1.56
40 1.44 1.09 1.26 1.44 1.40 1.42 1.43 1.46 1.56
48 1.43 1.09 1.25 1.44 1.40 1.42 1.42 1.46 1.55
56 1.43 1.09 1.25 1.44 1.40 1.42 1.42 1.45 1.55
64 1.43 1.09 1.25 1.43 1.40 1.41 1.42 1.45 1.54
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Table 6.  Orthotropy Parameters for [(±45/0/90)m]s and [(+452/0/90)m]s  Laminates

Number of 
laminate 
plies, 8m

Orthotropy parameter, O

IM7/
5260

Boron-
Al

S-glass-
epoxy

Kevlar 
49-epoxy

AS4/
3502

AS4/
3501-6

Boron-
epoxy

IM7/
PETI-5

P-100/
3502

  8 1.00 1.01 1.01 1.00 1.00 1.00 1.00 1.00 1.00
16 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02
24 1.02 1.02 1.02 1.03 1.02 1.02 1.02 1.02 1.03
32 1.02 1.02 1.02 1.03 1.02 1.02 1.03 1.02 1.03
40 1.02 1.02 1.02 1.03 1.02 1.02 1.03 1.03 1.03
48 1.02 1.02 1.02 1.03 1.02 1.02 1.03 1.03 1.03
56 1.02 1.02 1.02 1.03 1.02 1.02 1.03 1.03 1.03
64 1.02 1.02 1.02 1.03 1.02 1.02 1.03 1.03 1.03

Table 7. Orthotropy Parameters for [(0/90/±45)m]s and [(0/90/+452)m]s Laminates

Number of 
laminate 
plies, 8m

Orthotropy parameter, O

IM7/
5260

Boron-
Al

S-glass-
epoxy

Kevlar 
49-epoxy

AS4/
3502

AS4/
3501-6

Boron-
epoxy

IM7/
PETI-5

P-100/
3502

  8 1.13 1.05 1.09 1.14 1.13 1.13 1.14 1.14 1.15
16 1.08 1.04 1.06 1.08 1.07 1.07 1.08 1.08 1.09
24 1.06 1.03 1.04 1.06 1.06 1.06 1.06 1.06 1.07
32 1.05 1.03 1.04 1.06 1.05 1.05 1.05 1.05 1.06
40 1.04 1.03 1.03 1.05 1.04 1.04 1.05 1.05 1.05
48 1.04 1.03 1.03 1.05 1.04 1.04 1.05 1.04 1.05
56 1.04 1.02 1.03 1.04 1.04 1.04 1.04 1.04 1.04
64 1.04 1.02 1.03 1.04 1.04 1.03 1.04 1.04 1.04
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Table 8. Anisotropy Parameters for [(+φ)2m]s Laminates

Fiber 
angle, 

φ

Anisotropy parameter, A0

IM7/
5260

Boron-
Al

S-glass-
epoxy

Kevlar 
49-epoxy

AS4/
3502

AS4/
3501-6

Boron-
epoxy

IM7/
PETI-5

P-100/
3502

  0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
  5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01
15 1.00 1.00 1.00 1.00 1.00 1.01 1.01 1.00 1.02
20 1.00 1.00 1.00 1.00 1.00 1.02 1.01 1.00 1.03
25 1.01 1.00 1.00 1.00 1.01 1.03 1.00 1.00 1.05
30 1.02 1.00 1.00 1.00 1.01 1.04 1.00 1.01 1.08
35 1.03 1.00 1.01 1.01 1.02 1.06 1.00 1.03 1.11
40 1.06 1.00 1.02 1.03 1.04 1.08 1.01 1.05 1.14
45 1.09 1.00 1.04 1.06 1.07 1.11 1.05 1.09 1.18
50 1.13 1.01 1.06 1.12 1.11 1.14 1.11 1.13 1.23
55 1.18 1.01 1.08 1.18 1.16 1.17 1.19 1.19 1.28
60 1.22 1.02 1.09 1.25 1.20 1.20 1.27 1.25 1.33
65 1.25 1.02 1.09 1.29 1.22 1.21 1.32 1.29 1.39
70 1.24 1.02 1.08 1.29 1.21 1.19 1.32 1.29 1.42
75 1.20 1.01 1.06 1.24 1.16 1.15 1.27 1.24 1.39
80 1.12 1.01 1.03 1.15 1.10 1.09 1.17 1.15 1.28
85 1.04 1.00 1.01 1.05 1.03 1.03 1.05 1.05 1.10
90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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Table 9. Anisotropy Parameters for [±φ]T Laminates

Fiber 
angle, 

φ

Anisotropy parameter, A0

IM7/
5260

Boron-
Al

S-glass-
epoxy

Kevlar 
49-epoxy

AS4/
3502

AS4/
3501-6

Boron-
epoxy

IM7/
PETI-5

P-100/
3502

  0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
  5 0.97 1.00 0.99 0.97 0.98 0.98 0.96 0.97 0.93
10 0.92 1.00 0.98 0.91 0.94 0.94 0.90 0.90 0.85
15 0.88 0.99 0.96 0.86 0.90 0.90 0.86 0.86 0.80
20 0.85 0.99 0.94 0.83 0.87 0.87 0.83 0.83 0.77
25 0.83 0.99 0.93 0.82 0.85 0.85 0.82 0.81 0.76
30 0.82 0.99 0.92 0.81 0.84 0.84 0.82 0.81 0.75
35 0.82 0.99 0.92 0.82 0.84 0.84 0.82 0.81 0.75
40 0.83 0.99 0.93 0.82 0.85 0.84 0.83 0.81 0.75
45 0.84 0.99 0.94 0.84 0.86 0.85 0.85 0.82 0.76
50 0.86 1.00 0.95 0.86 0.88 0.86 0.87 0.84 0.77
55 0.88 1.00 0.96 0.89 0.90 0.88 0.90 0.87 0.78
60 0.91 1.00 0.98 0.92 0.93 0.91 0.94 0.90 0.80
65 0.94 1.00 0.99 0.95 0.96 0.93 0.97 0.93 0.84
70 0.97 1.00 0.99 0.97 0.98 0.96 0.99 0.97 0.89
75 0.99 1.00 1.00 0.99 0.99 0.98 1.00 0.99 0.94
80 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 0.98
85 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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Table 10. Orthotropy Parameters for [0p/90q]T Laminates

Orthotropy parameter, O

IM7/
5260

Boron-
Al

S-glass-
epoxy

Kevlar 
49-epoxy

AS4/
3502

AS4/
3501-6

Boron-
epoxy

IM7/
PETI-5

P-100/
3502

    0 0.51 0.90 0.69 0.52 0.55 0.51 0.55 0.49 0.34
    5 0.67 0.92 0.77 0.68 0.69 0.67 0.69 0.66 0.63
  10 0.76 0.94 0.82 0.76 0.77 0.76 0.77 0.75 0.73
  15 0.81 0.95 0.86 0.81 0.82 0.81 0.82 0.81 0.79
  20 0.85 0.97 0.89 0.86 0.86 0.85 0.86 0.85 0.84
  25 0.89 0.98 0.92 0.89 0.89 0.89 0.89 0.89 0.88
  30 0.92 0.98 0.94 0.92 0.92 0.91 0.92 0.91 0.91
  35 0.94 0.99 0.96 0.94 0.94 0.94 0.94 0.94 0.93
  40 0.96 1.00 0.97 0.96 0.96 0.96 0.96 0.96 0.96
  45 0.98 1.00 0.99 0.98 0.98 0.98 0.98 0.98 0.98
  50 1.00 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00
  55 1.02 1.01 1.02 1.02 1.02 1.02 1.02 1.02 1.03
  60 1.05 1.02 1.04 1.05 1.05 1.05 1.05 1.05 1.06
  65 1.09 1.03 1.06 1.08 1.08 1.09 1.08 1.09 1.10
  70 1.13 1.04 1.09 1.13 1.12 1.13 1.12 1.13 1.15
  75 1.19 1.05 1.12 1.18 1.17 1.19 1.17 1.19 1.22
  80 1.26 1.06 1.17 1.25 1.24 1.26 1.24 1.27 1.31
  85 1.35 1.07 1.22 1.35 1.33 1.36 1.33 1.37 1.43
  90 1.48 1.09 1.28 1.47 1.44 1.49 1.44 1.50 1.61
  95 1.67 1.11 1.36 1.65 1.60 1.67 1.59 1.70 1.93
100 1.98 1.13 1.45 1.93 1.84 1.98 1.82 2.05 2.93

  p
p + q

×100%
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Table 11. Anisotropy Parameters for [0p/90q]T Laminates

Anisotropy parameter, A0

IM7/
5260

Boron-
Al

S-glass-
epoxy

Kevlar 49-
epoxy

AS4/
3502

AS4/
3501-6

Boron-
epoxy

IM7/
PETI-5

P-100/
3502

    0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
    5 0.91 1.00 0.98 0.91 0.93 0.91 0.94 0.90 0.72
  10 0.84 0.99 0.95 0.85 0.87 0.84 0.88 0.82 0.64
  15 0.80 0.99 0.93 0.81 0.83 0.80 0.84 0.78 0.59
  20 0.77 0.98 0.91 0.78 0.81 0.77 0.81 0.75 0.57
  25 0.75 0.98 0.90 0.76 0.79 0.75 0.80 0.73 0.57
  30 0.74 0.98 0.89 0.75 0.78 0.74 0.79 0.73 0.59
  35 0.75 0.98 0.88 0.75 0.78 0.74 0.78 0.73 0.61
  40 0.75 0.97 0.88 0.76 0.78 0.75 0.79 0.74 0.65
  45 0.77 0.97 0.88 0.77 0.79 0.77 0.80 0.76 0.69
  50 0.79 0.97 0.89 0.79 0.81 0.79 0.82 0.78 0.73
  55 0.82 0.97 0.90 0.82 0.83 0.82 0.84 0.81 0.77
  60 0.85 0.98 0.91 0.85 0.86 0.85 0.86 0.84 0.82
  65 0.88 0.98 0.92 0.88 0.89 0.88 0.89 0.88 0.86
  70 0.91 0.98 0.94 0.91 0.91 0.91 0.92 0.91 0.90
  75 0.94 0.98 0.95 0.93 0.94 0.94 0.94 0.94 0.93
  80 0.96 0.99 0.97 0.96 0.96 0.96 0.96 0.96 0.96
  85 0.98 0.99 0.98 0.97 0.98 0.98 0.98 0.98 0.98
  90 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
  95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

  p
p + q

×100%
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Table 12. Orthotropy Parameters for [70p/0q]T Laminates

Orthotropy parameter, O

IM7/
5260

Boron-
Al

S-glass-
epoxy

Kevlar 49-
epoxy

AS4/
3502

AS4/
3501-6

Boron-
epoxy

IM7/
PETI-5

P-100/
3502

    0 1.98 1.13 1.45 1.93 1.84 1.98 1.82 2.05 2.93
    5 1.71 1.11 1.37 1.69 1.63 1.71 1.63 1.75 2.02
  10 1.54 1.09 1.30 1.52 1.49 1.54 1.49 1.56 1.70
  15 1.41 1.08 1.24 1.41 1.38 1.41 1.38 1.43 1.52
  20 1.32 1.07 1.20 1.31 1.30 1.32 1.30 1.33 1.39
  25 1.25 1.05 1.16 1.24 1.23 1.25 1.23 1.25 1.29
  30 1.19 1.05 1.13 1.19 1.18 1.19 1.18 1.20 1.22
  35 1.15 1.04 1.10 1.15 1.14 1.15 1.14 1.15 1.17
  40 1.11 1.03 1.08 1.11 1.11 1.11 1.11 1.12 1.13
  45 1.09 1.03 1.06 1.09 1.08 1.09 1.08 1.09 1.10
  50 1.06 1.03 1.05 1.06 1.06 1.06 1.06 1.06 1.07
  55 1.04 1.02 1.03 1.04 1.04 1.04 1.04 1.04 1.05
  60 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02
  65 1.00 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00
  70 0.98 1.01 0.99 0.98 0.98 0.98 0.98 0.98 0.97
  75 0.95 1.00 0.97 0.95 0.95 0.95 0.96 0.95 0.95
  80 0.92 0.99 0.94 0.92 0.92 0.92 0.92 0.92 0.91
  85 0.88 0.98 0.91 0.88 0.88 0.88 0.89 0.88 0.86
  90 0.82 0.97 0.88 0.83 0.83 0.82 0.83 0.82 0.80
  95 0.74 0.95 0.83 0.75 0.76 0.74 0.76 0.74 0.71
100 0.60 0.93 0.75 0.61 0.63 0.60 0.62 0.59 0.51

  p
p + q

×100%
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Table 13. Anisotropy Parameters for [70p/0q]T Laminates

Anisotropy parameter, A0

IM7/
5260

Boron-
Al

S-glass-
epoxy

Kevlar 49-
epoxy

AS4/
3502

AS4/
3501-6

Boron-
epoxy

IM7/
PETI-5

P-100/
3502

0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
5 1.02 1.01 1.01 1.02 1.02 1.02 1.02 1.03 1.07
10 1.04 1.01 1.02 1.05 1.04 1.04 1.05 1.05 1.13
15 1.06 1.02 1.02 1.07 1.05 1.05 1.07 1.08 1.17
20 1.07 1.02 1.03 1.09 1.06 1.05 1.09 1.09 1.19
25 1.07 1.02 1.03 1.10 1.06 1.05 1.10 1.10 1.20
30 1.07 1.03 1.03 1.10 1.06 1.04 1.11 1.09 1.20
35 1.06 1.03 1.03 1.10 1.05 1.03 1.11 1.09 1.18
40 1.05 1.03 1.03 1.09 1.04 1.01 1.12 1.08 1.16
45 1.03 1.04 1.03 1.09 1.04 1.00 1.12 1.06 1.12
50 1.02 1.04 1.03 1.08 1.03 0.98 1.12 1.05 1.08
55 1.01 1.04 1.03 1.08 1.02 0.97 1.13 1.04 1.05
60 1.01 1.04 1.03 1.08 1.02 0.96 1.14 1.04 1.01
65 1.01 1.04 1.04 1.09 1.03 0.96 1.15 1.04 0.98
70 1.02 1.04 1.05 1.11 1.04 0.97 1.18 1.05 0.96
75 1.04 1.04 1.06 1.13 1.06 0.98 1.20 1.07 0.96
80 1.07 1.04 1.07 1.16 1.09 1.00 1.24 1.10 0.97
85 1.11 1.04 1.08 1.20 1.12 1.04 1.28 1.15 1.01
90 1.16 1.03 1.09 1.25 1.16 1.09 1.32 1.20 1.08
95 1.22 1.03 1.10 1.31 1.20 1.15 1.36 1.27 1.21
100 1.24 1.02 1.08 1.29 1.21 1.19 1.32 1.29 1.42

  p
p + q

×100%
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Figure 1. Nondimensional 90-percent-decay length for symmetrically and unsymmetrically laminated cylinders,
as a function of laminate orthotropy.

Figure 2. Nondimensional 90-percent-decay length for symmetrically and unsymmetrically laminated cylinders,
as a function of laminate anisotropy.
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Figure 3. Effect of lamina material properties on nondimensional orthotropy parameter for single-ply, homoge-
neous, specially orthotropic laminates 

Figure 4. Effect of lamina material properties on nondimensional orthotropy parameter for [(±φ)m]s, [(+φ)2m]s, and
[(±φ)m]T laminates (m = 1, 2, ...).
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Figure 5. Nondimensional orthotropy parameter for typical laminates made of IM7/5260 material.

Figure 6. Effect of lamina material properties on nondimensional orthotropy parameter for [(02/±45)m]s laminates.
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Figure 7. Effect of lamina material properties on nondimensional orthotropy parameter for quasi-isotropic
laminates and similar unbalanced laminates.

Figure 8. Effect of lamina material properties on nondimensional anisotropy parameter for [(+φ)2m]s laminates
(m = 1, 2, ...).
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Figure 9. Effect of lamina material properties on nondimensional first-order correction factor for [(+φ)2m]s
laminates (m = 1, 2, ...).

Figure 10. Nondimensional 90-percent-decay length for [(+φ)2m]s laminates made of IM7/5260 graphite-

bismaleimide and P-100/3502 pitch-epoxy material 
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Figure 11. Effect of lamina material properties on nondimensional anisotropy parameter for [(0/90/+452)m]s and
[(+452/0/90)m]s laminates.

Figure 12. Effect of lamina material properties on nondimensional anisotropy parameter for [±φ]T laminates.
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Figure 13. Effect of stacking sequence number on nondimensional anisotropy parameter for [(±φ)m]T laminates
made of P-100/3502 pitch-epoxy material.

Figure 14. Effect of lamina material properties on nondimensional first-order correction factor for [±φ]T laminates.
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Figure 15. Effect of stacking sequence number on nondimensional first-order correction factor for [(±φ)m]T
laminates made of P-100/3502 pitch-epoxy material.

Figure 16. Nondimensional 90-percent-decay length for [±φ]T laminates made of IM7/5260 graphite-bismaleimide

and P-100/3502 pitch-epoxy material 
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Figure 17. Effect of lamina material properties on nondimensional orthotropy parameter for [0p/90q]T laminates.

Figure 18. Effect of lamina material properties on nondimensional anisotropy parameter for [0p/90q]T laminates.
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Figure 19. Nondimensional 90-percent-decay length for [0p/90q]T laminates made of IM7/5260 graphite-

bismaleimide and P-100/3502 pitch-epoxy material 

Figure 20. Effect of lamina material properties on nondimensional orthotropy parameter for [70p/0q]T laminates.
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Figure 21. Effect of lamina material properties on nondimensional anisotropy parameter for [70p/0q]T laminates.

Figure 22. Nondimensional 90-percent-decay length for [70p/0q]T laminates made of IM7/5260 graphite-

bismaleimide and P-100/3502 pitch-epoxy material 
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Appendix A

Sanders-Koiter Equations

The linear Sanders-Koiter shell equations (refs. 16 and 17) are presented in this appendix for a
right-circular cylinder with a radius that is given by R.  For these equations, x and θ denote the axial
and circumferential coordinates, respectively. First, the equilibrium equations are presented; then the
kinematic equations and the constitutive equations are presented. Last, the boundary conditions are
given for a complete right-circular cylinder at an edge that is given by a constant value of the axial
coordinate x.

Equilibrium Equations

The equilibrium equations are given in a form similar to those found in reference 22; that is,

(A1)

(A2)

(A3)

(A4)

(A5)

where , , and  are the membrane stress resultants;  and  are the transverse shear-
stress resultants; , , and  are the bending stress resultants; , , and  are the applied
surface tractions; and  and  are constants that identify the equations of other shell theories that
are considered herein. In particular, the Sanders-Koiter equations are given by , and the
Love-Kirchhoff equations are given by  and . Donnell’s equations are given by .
This convention is used throughout the present study.

Kinematic Equations

The kinematic equations are given by

(A6)

  ∂Nx

∂x
+

1
R

∂Nxθ
∂θ

–
c2

2R2

∂Mxθ
∂θ

+ qx = 0

  ∂Nxθ
∂x

+
1
R

∂Nθ
∂θ

+
c1

R
Qθ +

c2

2R

∂Mxθ
∂x

+ qθ = 0

  ∂Qx

∂x
+

1
R

∂Qθ
∂θ

–
Nθ
R

+ qn = 0

  ∂Mx

∂x
+

1
R

∂Mxθ
∂θ

– Qx = 0

  ∂Mxθ
∂x

+
1
R

∂Mθ
∂θ

– Qθ = 0

 Nx   Nθ   Nxθ  Qx   Qθ
 Mx   Mθ   Mxθ  qx   qθ  qn

 c1  c2
 c1 = c2 = 1

 c1 = 1  c2 = 0  c1 = c2 = 0

  εx
o =

∂u
∂x
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(A7)

(A8)

(A9)

(A10)

 (A11)

(A12)

(A13)

(A14)

where u, v, and w are the axial, circumferential, and radial displacements of a point of the shell middle
surface; , , and  are the membrane strains; , , and  are the rotations; and , , and

 are the bending strains. The displacement w is positive when it is outward from the cylinder
reference surface.

Constitutive Equations

The isothermal constitutive equations are given in matrix form by

(A15)

  εθ
o =

1
R

∂v
∂θ

+
w
R

  γxθ
o =

∂v
∂x

+
1
R

∂u
∂θ

  βx
o = –

∂w
∂x

  
βθ

o =
c1

R
v –

1
R

∂w
∂θ

  
βn

o =
c2

2
∂v
∂x

–
1
R

∂u
∂θ

  
κx

o =
∂βx

o

∂x
= –

∂2w

∂x2

  
κθ

o =
1
R

∂βθ
o

∂θ
=

c1

R2

∂v
∂θ

–
1

R2

∂2w

∂θ2

  
κxθ

o =
1
R

∂βx
o

∂θ
+ βn

o +
∂βθ

o

∂x
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2
R

∂2w
∂x ∂θ

+
1
R

c1 +
1
2
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–
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2R2
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 εx
o  εθ
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o

  κxθ
o
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Nθ
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=

A11 A12 A16 B11 B12 B16

A12 A22 A26 B12 B22 B26

A16 A26 A66 B16 B26 B66

B11 B12 B16 D11 D12 D16

B12 B22 B26 D12 D22 D26

B16 B26 B66 D16 D26 D66

εx
o

εθ
o

γxθ
o

κx
o

κθ
o

κxθ
o



44

where the subscripted A, B, and D terms of the matrix are the stiffnesses of laminated-composite
shells that are obtained from the Love-Kirchhoff shell theory. Moreover, the constitutive terms in equa-
tion (A15) are identical to those for laminated-composite plates that are given in reference 18, page 198.

Boundary Conditions

The boundary conditions for an edge that is defined by a constant value of the axial coordinate x
are given by

    or    (A16)

    or    (A17)

    or    (A18)

    or    (A19)

where , , and  are applied edge displacements;  is an applied edge rotation; and ,
, , and  are applied edge loads.

  Nx = Nx(θ)   u = u(θ)

  
Nxθ +

1
R

c1 +
1
2

c2 Mxθ = T(θ)   v = v(θ)

  
Qx +

1
R

∂Mxθ
∂θ

= V(θ)   w = w(θ)

  Mx = Mx(θ)   βx
o = β(θ)

  u(θ)   v(θ)   w(θ)   β(θ)   Nx(θ)
  T(θ)   V(θ)   Mx(θ)
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Appendix B

Equations for Axisymmetry

The linear Sanders-Koiter shell equations that are presented in appendix A for a right-circular cylin-
der with a radius R are specialized in this appendix for the case of axisymmetric behavior. For these
equations, x  and θ denote the axial and circumferential coordinates, respectively. The specialization to
axial symmetry is conducted by eliminating all terms in the equations of appendix A that are differenti-
ated with respect to the circumferential coordinate θ. First, the equilibrium equations, the kinematic
equations, and the constitutive equations are presented. Then, the boundary conditions are given for a
complete right-circular cylinder at an edge that is given by a constant value of the axial coordinate x.
Last, the axisymmetric equations are manipulated into a single ordinary differential equation in terms of
the radial displacement w(x).

Equilibrium Equations

The equilibrium equations for axisymmetric behavior are given by

(B1)

(B2)

(B3)

(B4)

(B5)

where the membrane stress resultants , , and ; the transverse shear-stress resultants  and
; the bending stress resultants , , and ; and the applied surface tractions , , and 

are functions of only the axial coordinate x.

Kinematic Equations

The kinematic equations are given by

(B6)

 dNx

dx
+ qx(x) = 0

  dNxθ
dx

+
c1

R
Qθ +

c2

2R

dMxθ
dx

+ qθ(x) = 0

  dQx

dx
–

Nθ
R

+ qn(x) = 0

 dMx

dx
– Qx = 0

  dMxθ
dx

– Qθ = 0

 Nx   Nθ   Nxθ  Qx
  Qθ  Mx   Mθ   Mxθ  qx  qθ  qn

  εx
o =

du
dx
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(B7)

(B8)

(B9)

(B10)

 (B11)

(B12)

(B13)

(B14)

where the middle-surface displacements u, v, and w; the membrane strains , , and ; the
rotations , , and ; and the bending strains , , and  are functions of only the axial
coordinate x.

Constitutive Equations

The isothermal constitutive equations reduce to

(B15)

  εθ
o =

w
R

  γxθ
o =

dv
dx

  βx
o = –

dw
dx

  
βθ

o =
c1

R
v

  
βn

o =
c2

2
dv
dx

  
κx

o =
dβx

o

dx
= –

d2w

dx2

  κθ
o = 0

  
κxθ

o =
1
R

βn
o +

dβθ
o

dx
=

1
R

c1 +
1
2

c2
dv
dx

 εx
o  εθ

o   γxθ
o

 βx
o  βθ

o  βn
o  κx

o  κθ
o   κxθ

o

  
Nx

Nθ
Nxθ
Mx

Mθ
Mxθ

=

A11 A12 A16 B11 B12 B16

A12 A22 A26 B12 B22 B26

A16 A26 A66 B16 B26 B66

B11 B12 B16 D11 D12 D16

B12 B22 B26 D12 D22 D26

B16 B26 B66 D16 D26 D66

εx
o

εθ
o

γxθ
o

κx
o

0

κxθ
o
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where the subscripted A, B, and D terms of the matrix are the usual constitutive terms of classical
Love-Kirchhoff-type laminated composite shell theory or classical laminated plate theory (e.g., see
p. 198 of ref. 18).

Boundary Conditions

The boundary conditions for an edge that is defined by a constant value of the axial coordinate x
are given by

  or  (B16)

  or  (B17)

  or  (B18)

  or  (B19)

where the applied edge displacements , , and ; the applied edge rotation ; and the applied edge

loads , , , and  are all constants.

Bending Boundary-Layer Equation

The bending boundary-layer equation is obtained by first noting that integration of equation (B1)
yields

(B20)

where C  is a constant of integration that is determined from the boundary condition given by equa-
tion (B16). Next, equations (B2) and (B5) are combined to get

(B21)

For convenience, the parameter  

(B22)

is introduced such that the Sanders-Koiter equations are given by  and the Love-Kirchhoff equa-

tions are given by . Donnell’s equations are given by . Similarly, the function

 Nx = Nx  u = u

  
Nxθ +

1
R

c1 +
1
2

c2 Mxθ = T  v = v

 Qx = V  w = w

 Mx = Mx
  βx

o = β

u v w β
 Nx T V  Mx

  Nx = – qx dx + C ≡ N(x)

  dNxθ
dx

+
1
R

c1 +
1
2

c2
dMxθ

dx
+ qθ(x) = 0

  µ = c1 +
1
2

c2

  µ =
3
2

  µ = 1   µ = 0
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(B23)

is introduced so that equation (B21) becomes

(B24)

and the corresponding boundary condition given by equation (B17) becomes

  or  (B25)

Integration of equation (B24) yields

(B26)

where C  is a constant of integration that is determined from the boundary condition given by equa-
tion (B25). Next, equations (B3) and (B4) are combined to give

(B27)

The next step in the analysis is the simplification of the constitutive equations. First, by using equa-
tions (B8) and (B22), equation (B14) is expressed as

(B28)

By using equations (B23) and (B28), the constitutive equations are expressed as

(B29)

and

(B30)

  T(x) = Nxθ +
µ
R

Mxθ

  dT
dx

+ qθ(x) = 0

 T = T  v = v

  T = – qθ dx + C ≡ T(x)

  d2Mx

dx2
–

Nθ
R

+ qn(x) = 0

  κxθ
o =

µ
R

γxθ
o

  Nx

Nθ

T

Mx

=

A11 A12 A16 B11

A12 A22 A26 B12

A16 A26 A66 B16

B11 B12 B16 D11

εx
o

εθ
o

γxθ
o

κx
o

  Mθ = B12εx
o + B22εθ

o + B26γxθ
o + D12κx

o
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where

(B31)

(B32)

(B33)

(B34)

(B35)

The motivation for writing the constitutive equations in this form is that the matrix equation given by
equation (B29) is the only part of the full constitutive equations that appears in the strain-energy density
function, which is used in the present paper to determine the corresponding positive-definiteness condi-
tions. With these simplified constitutive equations and equations (B6)–(B8) and (B12), equation (B20)
is expressed as

(B36)

and equation (B26)  is expressed as

(B37)

Equations (B36) and (B37) are then solved for  and  to get

(B38)

(B39)

  
A16 = A16 + µ h

R

B16

h

  
A26 = A26 + µ h

R

B26

h

  
A66 = A66 + 2µ h

R

B66

h
+ µ2 h

R

2 D66

h2

  
B16 = B16 + µ h

R

D16

h

  
B26 = B26 + µ h

R

D26

h

  
A11

du
dx

+ A12
w
R

+ A16
dv
dx

– B11
d2w

dx2
– N(x) = 0

  
A16

du
dx

+ A26
w
R

+ A66
dv
dx

– B16
d2w

dx2
– T(x) = 0

 du
dx

 dv
dx

  

du
dx

=

A66N(x) – A16T(x) + A16A26 – A12A66
w
R

+ A66B11 – A16B16
d2w

dx2

A11A66 – A16
2

  

dv
dx

=

A11T(x) – A16N(x) + A12A16 – A11A26
w
R

+ A11B16 – A16B11
d2w

dx2

A11A66 – A16
2
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Equation (B39) indicates that the circumferential displacement  v(x)  becomes uncoupled from the axial
displacement u(x) and the radial displacement w(x) when , which implies that

. In addition, the constitutive equation (B29) indicates that , , and
 become uncoupled from the torsional, shear strain  when  and that ,

which is defined by equation (B23), becomes uncoupled from , , and . Furthermore, equa-
tion (B30) indicates that  becomes uncoupled from  when , which implies

.

Next, equations (B38) and (B39) are then substituted into equations (B6) and (B8), and the resulting
expressions for  and , along with equations (B7) and (B12), are substituted into the constitutive
equation (B29). This action converts the strains and stress results in equation (B29) into functions of the
radial displacement w(x). Substituting the expressions for  and  into equation (B27) yields the
bending boundary-layer equation that is given by

(B40)

The constant coefficients are given by

(B41)

(B42)

(B43)

The function  is given by

                           

(B44)

 A16 = A26 = B16 = 0
 A16 = A26 = B16 = D16 = 0  Nx   Nθ
 Mx

  γxθ
o  A16 = A26 = B16 = 0 T

 εx
o  εθ

o  κx
o

  Mθ
  γxθ

o  B26 = 0
 B26 = D26 = 0

  εx
o   γxθ

o

  Nθ  Mx

  
C1

d4w

dx4
+ C2

d2w

dx2
+ C3w = C4(x)

 

C1 = D11 1 –
A66B11

2 + A11B16
2 – 2A16B11B16

A11A66 – A16
2 D11

 

C2 = –
2
R

B12 +
A16A26 – A12A66 B11 + A12A16 – A11A26 B16

A11A66 – A16
2

 

C3 =
A11A22 – A12

2 A66 – A11A26
2 – A22A16

2 + 2A12A16A26

R2 A11A66 – A16
2

 C4(x)

 

C4(x) = qn(x) +
A16A26 – A12A66 N(x) + A12A16 – A11A26 T(x)

R A11A66 – A16
2

  

+

B11A66 – A16B16
d2N

dx2
+ A11B16 – B11A16

d2T

dx2

A11A66 – A16
2
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These expressions are simplifed further by introducing the following expressions:

(B45)

(B46)

(B47)

(B48)

(B49)

By using equations (B45)–(B49), equations (B41)–(B43) are expressed as

(B50)

(B51)

(B52)

Similarly, for the case where the second derivatives of  and  are zero valued, equation (B44)
becomes

(B53)

The desired form of the bending boundary-layer equation is obtained by dividing equation (B40) by ;
that is,

 
a12 =

A16A26 – A12A66

A11A22 – A12
2 A66 – A11A26

2 – A22A16
2 + 2A12A16A26

 
a22 =

A11A66 – A16
2

A11A22 – A12
2 A66 – A11A26

2 – A22A16
2 + 2A12A16A26

 
a26 =

A12A16 – A11A26

A11A22 – A12
2 A66 – A11A26

2 – A22A16
2 + 2A12A16A26

 b21 = – a12B11 + a22B12 + a26B16

  
e = 1 –

A66B11
2 + A11B16

2 – 2A16B11B16

A11A66 – A16
2 D11

  C1 = D11e

 
C2 =

2
R

b21

a22

 C3 =
1

R2a22

 N(x)  T(x)

 
C4(x) = qn(x) +

a12N(x) + a26T(x)

Ra22

 C1
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(B54)

where the constants S and Q are given by

(B55)

(B56)

The function P(x) is given by

(B57)

for the special case when the second derivatives of  and  are zero valued. The quantity 
that appears in equations (B54)–(B56) is sometimes referred to, in some contexts, as a reduced bending
stiffness (ref. 12).

  d4w

dx4
+ 4S

d2w

dx2
+ 4Qw = P(x)

  
S =

C2

4C1
=

b21

2Ra22D11e

  
Q =

C3

4C1
=

1

4R2a22D11e

  
P(x) =

C4(x)

C1
=

qn(x)

D11e
+

a12N(x) + a26T(x)

Ra22D11e

 N(x)  T(x)   D11e
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Appendix C

Anisotropy-Factor Equations

The first-order approximation of the anisotropy factor  that is used herein is given by

(C1)

where  is the value of equation (20b), with  in the terms with the overbars. This expression is
given by

(C2)

which is the anisotropy factor that corresponds to Donnell’s equations. The terms , , and  are
given by

(C3)

(C4)

(C5)

(C6)

(C7)

A

   
A ≈A 0 1 + µC1

h
R

  A 0   µ = 0

  

A 0 =
A11A22 – A12

2

A11
a22 e0

1/4

1 –
b21

a22D11 e0

–1/2

 a22  b21
 e0

 
a12 =

A16A26 – A12A66

A11A22 – A12
2 A66 – A11A26

2 – A22A16
2 + 2A12A16A26

 
a22 =

A11A66 – A16
2

A11A22 – A12
2 A66 – A11A26

2 – A22A16
2 + 2A12A16A26

 
a26 =

A12A16 – A11A26

A11A22 – A12
2 A66 – A11A26

2 – A22A16
2 + 2A12A16A26

 b21 = – a12B11 + a22B12 + a26B16

  
e0 = 1 –

A66B11
2 + A11B16

2 – 2A16B11B16

A11A66 – A16
2 D11



54

The term  is a first-order correction to the results that correspond to Donnell’s equations and is
given by

(C8)

where

      (C9)

(C10)

(C11)

(C12)

(C13)

and

(C14)

  C1

  

C1 =
a22D11e0 a22e1 + a122e0 + 2a22 b121e0 – b21e1 – 2a122b21e0

4a22e0 a22D11e0 – b21

  

e1 =

2 A16B11– A11B16 D16 A11A66– A16
2 – B16 B11A66+ A11B66 + A16 A11B66+ B16

2

A11A66– A16
2

2
D11h

 
a112 =

B16f16 + B26f26 + B66f66

A11A22 – A12
2 A66 – A11A26

2 – A22A16
2 + 2A12A16A26

2

h

 
a122 = – 2

B16g16 + B26g26 + B66g66

A11A22 – A12
2 A66 – A11A26

2 – A22A16
2 + 2A12A16A26

2

h

 
a126 =

B16h16 + B26h26 + B66h66

A11A22 – A12
2 A66 – A11A26

2 – A22A16
2 + 2A12A16A26

2

h

 
b121 = – a112B11 + a122B12 + a126B16 +

a26D16

h

 
f16 = A26 A16

2 A22 – A11A26
2 + A66 A26 A11A22 + A12

2 – 2A12A22A16
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(C15)

(C16)  

(C17)

(C18)

(C19)

(C20)

(C21)

(C22)

Special Cases for AAAA0 and CCCC1 

Simplifications to  A0  and C1 are presented below for unbalanced and balanced, symmetric lami-
nates and for balanced, unsymmetric laminates that include the subclasses of general antisymmetric
laminates, antisymmetric cross-ply laminates, and antisymmetric angle-ply laminates.

     Unbalanced and balanced symmetric laminates

For  unbalanced,  symmetric  laminates,  ,  ,  and  
 For this special case,

(C23)

 
f26 = A16 A26

2 A11 – A22A16
2 + A66 A16 A11A22 + A12

2 – 2A11A12A26

 f66 = 2 A12A16 – A11A26 A16A22 – A12A26

 g16 = A12A16 – A11A26 A16A26 – A12A66

 g26 = A12A16 – A11A26 A11A66 – A16
2

 g66 = A12A16 – A11A26
2

 h16 = A12A66 A12A66 – A12
2 + A11A26 A12A26 – A16A22 + A16A22 A12A16 – A11A26

 h26 = –A11A66 A11A22 – A12
2 + A16

2 A11A22 – 2A12
2 + A11A26 2A12A16 – A11A26

 h66 = 2 A11A26 – A12A16 A11A22 – A12
2

  A16 ≠ 0   A26 ≠ 0  B11 = B12 = B22 = B16 = B26 =
 B66 = 0.

  
A 0 =

A11A22 – A12
2 A11A66 – A16

2

A11 A11A22 – A12
2 A66 – A11A26

2 – A22A16
2 + 2A12A16A26

1/4
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which agrees with the corresponding equations given by Reuter (ref. 4), and

(C24)

For balanced, symmetric laminates,  in addition to the subscripted B-matrix constitutive
terms.  For this special case,  and .

     Balanced, unsymmetric laminates

For balanced, unsymmetric laminates, , which yields the following simplified
expressions:

(C25)

(C26)

(C27)

(C28)

(C29)

For the subclass of balanced, antisymmetric laminates, , in addition to the shear-
extensional coupling terms, which yields the following simplification:

(C30)

  
C1 =

D16 A12A16 – A11A26

2h A11A22 – A12
2 A66 – A11A26

2 – A22A16
2 + 2A12A16A26

1/2

D11 A11A66 – A16
2

1/2

 A16 = A26 = 0
  A 0 = 1   C1 = 0

 A16 = A26 = 0

  
e0 = 1 –

B11
2

A11D11
–

B16
2

A66D11

   
Λ =

A11B12 – A12B11

A11D11(A11A22 – A12
2 ) e0

   A 0 = e0
4 1 + Λ –1/2

  
e1 = –2

B16

A66h

D16

D11
–

B11B16

A11D11
–

B16B66

A66D11

   

C1 =
1

4(1 + Λ)

e1

e0

(1 + 2Λ) +
2B16 A11B26 – A12B16

A66h A11D11 A11A22 – A12
2 e0

 D16 = D26 = 0

  
e1 =

2B16
2

A66D11h

B11

A11
+

B66

A66
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that is applied to equation (C29). For the subclass of (balanced) antisymmetric cross-ply laminates,
, , and  in addition to the shear-extensional cou-

pling terms. For this special case,  and

(C31)

where

(C32)

For the subclass of balanced, antisymmetric angle-ply laminates,  and

 in addition to the shear-extensional coupling terms. For this special case, 

where

(C33)

which agrees with the corresponding equations given by Reuter (ref. 4), and

         (C34)

Further simplifications can be made to equations (C31) and (C32) for  [0/90/.../90]  antisymmetric-
cross-ply-laminate shell walls with an even number of layers that have identical material properties. For
these laminates, the plies are specially orthotropic, and their principal material directions are oriented at
0° and 90° to the cylinder axes in an alternating manner. In particular, the major principal axes of the
odd-numbered and even-numbered plies are aligned with the x-  and θ-axis, respectively, with the first
ply in the stacking sequence located at the inner surface of the cylinder. Moreover, all odd-numbered
plies have the same thickness, and all even-numbered plies have the same thickness, but these
two thicknesses are, in general, different. The laminate stiffnesses are given in reference 18 (see
pp. 224–226) in terms of the number of layers N, the thickness ratio M, the ratio of the principal elastic

moduli  (for which 0 < F  1), and the reduced, plane-stress lamina stiffnesses. The thickness

ratio is defined by

(C35)

 B12 = B16 = B26 = B66 = 0  B22 = – B11  D16 = D26 = 0
  C1 = 0

  

A 0 = e0
4

1 –
A12B11

A11D11(A11A22 – A12
2 ) e0

–1/2

  
e0 = 1 –

B11
2

A11D11

 B11 = B12 = B22 = B66 = 0

 D16 = D26 = 0   A 0 = e0
4

  
e0 = 1 –

B16
2

A66D11

  

C1 =
B16 A11B26 – A12B16

2A66h A11D11 A11A22 – A12
2 e0

 
F =

E2

E1
≤

  
M = t(k)Σ

k=1,3,...

N–1

÷ t(k)Σ
k=2,4,...

N

=
t(1)

t(2)
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where  denotes the thickness of the kth ply and

 (C36)

is the total laminate thickness. For the antisymmetric cross-ply laminates, t(1) and t(2) are the thicknesses
of the 0° and 90° layers, respectively. Substituting the nonzero laminate stiffness expressions for this
class of antisymmetric cross-ply laminates that are given in reference 18 into equations (21), (C31),
and (C32) yields

(C37)

(C38)

(C39)

where

(C40)

and ν12 is the major Poisson’s ratio. For the special, but practical, case of regular antisymmetric cross-
ply lamination, all plies have the same thickness and equations (C37)–(C39) reduce to

(C41)

(C42)

(C43)

 t(k)

  
h = t(k)Σ

k=1,3,...

N–1

+ t(k)Σ
k=2,4,...

N

=
N
2

t(1) + t(2)

   
O =

[1 – (1 – F)Q](M + 1)(M + F)

(M + F)(1 + MF) – [(1 + M)Fν12]2

1/4

   

A 0 = e0
4

1 +
12 MF(1 – F)ν12

N [1 – (1 – F)Q](M + 1)(M + F){(M + F)(1 + MF)– [(M + 1)Fν12]2}e0

–1/2

  
e0 = 1 –

12M2(1 – F)2

N2(M + 1)3(M + F)[1 – (1 – F)Q]

 Q =
1

1 + M
+

8M(M – 1)

N2(M + 1)3

   

O = 1 –
2Fν12

1 + F

2
–1/4

   

A 0 = e0
4

1 +
12 ν12 F(1 – F)

N(1 + F) [(1 + F)2 – (2Fν12)2]e0

–1/2

  
e0 = 1 –

3

N2

1 – F
1 + F

2
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Appendix D

Example

Numerical calculations of the nondimensional orthotropy and anisotropy parameters and the bend-
ing boundary-layer decay length are presented in this appendix for a [(±45)2/304/(0/90)2]T  unbalanced,
unsymmetrically laminated cylinder with a radius R = 4 in. For this laminate, the ±45° plies and the 0°
and 90° plies are made of the Kevlar 49-epoxy material given in table 1. The other plies are made of the
AS4/3502 graphite-epoxy material given in table 1. All ply thicknesses are 0.005 in., and the total wall
thickness is given by h = 0.06 in.

The laminate stiffnesses were calculated from the formulas given on page 198 of reference 18 and
are given in matrix form by

The numerical value of the nondimensional orthotropy parameter O is obtained by substituting the
appropriate laminates stiffnesses into equation (20a), which gives O = 1.0628. To calculate the nondi-
mensional anisotropy parameter A0, the inverse of the matrix with the subscripted A-terms is needed.
This inverse matrix is given by

The expressions for a12, a22, and a26 are given by equations (C3)–(C5), respectively. Substituting the
numerical values for B11, B12, B16, a12, a22, and a26 into equation (C6) gives  b21 = 0.0059 in. Similarly,
substituting the laminate stiffnesses into equation (C7) gives e0 = 0.9713. Next, the values for the lami-
nate stiffnesses, a22, e0, and b21 are substituted into equation (C2) to get A0 = 1.1940.

  A11 A12 A16

A22 A26

Symmetric A66

=
4.1678 1.3051 1.0787

2.4682 0.3932
Symmetric 1.4022

× 105 lb/in.

  B11 B12 B16

B22 B26

Symmetric B66

=
0.7475 –1.0051 –0.1288

1.2628 –0.1288
Symmetric –1.0051

× 103 lb

  D11 D12 D16

D22 D26

Symmetric D66

=
7.8844 2.8842 0.8749

9.3791 0.6464
Symmetric 3.0057

× 101 in–lb

  a11 a12 a16

a22 a26

Symmetric a66

=
3.4344 –1.4604 –2.2325

4.8619 –0.2400
Symmetric 8.9163

× 10–6 in/lb
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The numerical value for the first-order correction factor C1 is obtained by first substituting the
appropriate laminate stiffnesses into equation (C9) to get e1 = 0.0075. Next, the appropriate laminate
stiffnesses are substituted into equations (C14)–(C22); then, the resulting values are substituted
into  equations (C10)–(C12) to get  a112 = 6.2541 x 10−10 in/lb, a122 = −1.5760 x 10−9 in/lb, and
a126 = −5.2861 x 10−9 in/lb. Substituting these and the other required values into equation (C13) gives
b121 = 3.2255 x 10−5 in. Similarly, equation (C8) gives C1 = 0.0022. 

The first-order approximation of the anisotropy factor A is obtained by substituting the numerical

values for µ, , A0, and C1 into equation (C1). For the present example, . Substituting the

numerical values for the last three of these quantities and µ = 1.5, which corresponds to the use of the

Sanders-Koiter equations, into equation (C1) gives A = A0 = 1.1940. To compute the exact value

of  anisotropy factor A that is given by equation (20b), the laminate stiffnesses, µ, and  are

substituted in equations (B31)–(B34) to obtain  = 1.0782 x 105 lb/in.,  = 0.3927 x 105 lb/in.,

 = 1.3947 x 105 lb/in., and  = −1.2555 x 102 lb. Next, the value for e is computed by

substituting these results and the appropriate laminate stiffness values into equation (B49); this action

gives e = 0.9714. Then, the quantities defined by equations (B45)–(B48) are calculated to get  =

−1.4604 x 10−6 in/lb,  = 4.8619 x 10−6 in/lb,  = −0.2401 x 10−6 in/lb, and  = 0.0059 in.

Finally, substituting the appropriate numerical values into equation (20b) gives the exact value of

anisotropy factor A = A0 = 1.1940, which is identical with the first-order approximation for A. 

The nondimensional bending boundary-layer decay length, with anisotropy neglected, is obtained
by specifying a value for the tolerance parameter ε and then substituting that value and the numerical
value for the nondimensional orthotropy parameter O into equation (19). For ε = 0.1, this step gives

. This value corresponds to  which indicates that the bending action attenu-

ates at a distance of approximately 23 percent of the cylinder radius. The nondimensional bending
boundary-layer decay length, with anisotropy included, is obtained by substituting the numerical values

for  and A into equation (18). This step gives , which corresponds to ,

which indicates that the bending action attenuates at a distance of approximately 27 percent of the cylin-
der radius. Overall, these results indicate a very small effect of the laminate anisotropy.
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Presented at the 41st AIAA/ASME/ASCE/ASC/ASH Structures, Structural Dynamics, and Materials Conference,
April 3–6, 2000, Atlanta, Georgia.

A study of the attenuation of bending boundary layers in balanced and unbalanced, symmetrically and unsymmet-
rically laminated cylindrical shells is presented for nine contemporary material systems. The analysis is based on
the linear Sanders-Koiter shell equations and specializations to the Love-Kirchhoff shell equations and Donnell’s
equations are included. Two nondimensional parameters are identified that characterize the effects of laminate
orthotropy and anisotropy on the bending boundary-layer decay length in a very general manner. A substantial
number of structural design technology results are presented for a wide range of laminated-composite cylinders.
For all laminates considered, the results show that the differences between results obtained with the Sanders-Koiter
shell equations, the Love-Kirchhoff shell equations, and Donnell’s equations are negligible. The results also show
that the effect of anisotropy in the form of coupling between pure bending and twisting has a negligible effect on
the size of the bending boundary-layer decay length of the balanced, symmetrically laminated cylinders considered.
Moreover, the results show that coupling between the various types of shell anisotropies has a negligible effect on
the calculation of the bending boundary-layer decay length in most cases. The results also show that, in some cases,
neglecting the shell anisotropy results in underestimating the bending boundary-layer decay length and, in other
cases, results in an overestimation.
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